KẾT LUẬN VÀ KIẾN NGHỊ

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu tạo chủng escherichia coli có khả năng sản xuất vanillin từ axit ferulic (Trang 94)

KẾT LUẬN VÀ KIẾN NGHỊ 4.1. Kết luận

1. Tách dịng thành cơng 3 gene mã hóa con đường sinh tổng hợp vanillin từ axit ferulic, bao gồm: gltA, ech và fcs.

2. Thiết kế thành công 2 vector biểu hiện mang các gene gltA, ech và fcs là:

pRSET-GEF và pET22-GEF.

3. Đã cảm ứng biểu hiện các gen đích để sản xuất vanillin từ axit ferulic sử dụng vật chủ E. coli BL21(DE3).

4. Phân tích lđược hiệu suất sinh tổng hợp vanillin tạo thành của E. coli tái tổ hợp bằng phương pháp HPLC. Hệ thống pET22-GEF và pRSET-GEF đạt hiệu suất lần lượt là 1.44 g/L và 1.17 g/L.

4.2. Kiến nghị

Tiếp tục nghiên cứu quy trình lên men E.coli sinh tổng hợp vanillin từ axit ferulic để thu hồi vanillin thành phẩm.

Tiếp tục nghiên cứu tăng cường năng suất sinh tổng hợp vanillin theo các hướng sau:

- Bất hoạt con đường trao đổi chất cạnh tranh để dồn nguồn năng lượng và vật chất cho con đường sinh tổng hợp vanillin

- Giảm độc cho tế bào vật chủ bằng cách (1) sử dụng các chất hấp phụ; (2) chọn lọc các chủng đột biến kháng vanillin/axit ferulic

- Thiết lập các quy trình lên men hiệu quả hơn như lên men đáp ứng bề mặt hoặc lên men liên tục.

TÀI LIỆU THAM KHẢO I. Tiếng Việt

1. Đinh Thị Ngọ, Nguyễn Bích Thuỷ, Đào Văn Tường (1991) Tổng hợp vanillin từ eugeneol. Tạp chí Hóa học 29 (4): 21-27.

2. Đinh Thị Ngọ, Nguyễn Thị Bích Thuỷ, Đào Văn Tường (1992) Nghiên cứu oxy hóa lignin thành vanillin, Tạp chí Hóa học

3. Đinh Thị Ngọ (1996) Tổng hợp vanillin từ tinh dầu lá quế. Tạp chí Khoa học &

cơng nghệ

4. Phùng Thu Nguyệt, Nguyễn Hồng Thanh, Jan-Christer Janson, Trương Nam Hải (2009) Nghiên cứu lên men lượng lớn chủng Escherichia coli BL21 tái tổ hợp mang gene mã hóa lipase của Bacillus subtilis FS2. Tạp chí Khoa học và

Công nghệ, Tập 47, số 2, Tr109-116

II. Tiếng Anh

5. Abraham, D. J., Mehanna, A. S., Wireko, F. C., Whitney, J., Thomas, R. P., & Orringer, E. P. (1991). Vanillin, a potential agenet for the treatment of sickle cell anemia. Blood, 77(6), 1334-1341.

6. Achterholt, S., Priefert, H., & Steinbuchel, A. (2000). Identification of amycolatopsis sp. Strain hr167 genes, involved in the bioconversion of axit ferulic to vanillin. Appl Microbiol Biotechnol, 54(6), 799-807.

7. Akagi, K., Hirose, M., Hoshiya, T., Mizoguchi, Y., Ito, N., & Shirai, T. (1995). Modulating effects of ellagic acid, vanillin and quercetin in a rat medium term multi-organ carcinogenesis model. Cancer Lett, 94(1), 113-121.

8. Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., & Momenbeik, F. (2011a). Candida galli strain pgo6: A novel isolated yeast strain capable of transformation of isoeugeneol into vanillin and vanillic acid. Curr Microbiol,

62(3), 990-998. doi:10.1007/s00284-010-9815-y

9. Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., & Momenbeik, F. (2011b). Pseudomonas resinovorans spr1, a newly isolated strain with potential of transforming eugeneol to vanillin and vanillic acid. N Biotechnol, 28(6), 656- 664. doi:10.1016/j.nbt.2011.06.009

10. Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., & Momenbeik, F. (2011c). Use of growing cells of pseudomonas aeruginosa for synthesis of the natural vanillin via conversion of isoeugeneol. Iran J Pharm Res, 10(4), 749-757. 11. Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., & Momenbeik, F. (2012).

Conversion of isoeugeneol to vanillin by psychrobacter sp. Strain csw4.

Applied Biochemistry and Biotechnology, 166(1), 1-12. doi:10.1007/s12010-

011-9397-6

12. Barghini, P., Di Gioia, D., Fava, F., & Ruzzi, M. (2007). Vanillin production using metabolically engineered escherichia coli under non-growing conditions. Microb Cell Fact, 6, 13. doi:10.1186/1475-2859-6-13

13. Barthelmebs, L., Divies, C., & Cavin, J.-F. (2000). Knockout of the p-coumarate decarboxylase gene from lactobacillus plantarum reveals the existence of two other inducible enzymatic activities involved in phenolic acid metabolism.

Applied and Environmental Microbiology, 66(8), 3368-3375. doi:10.1128/aem.66.8.3368-3375.2000

14. Berza, I., Dishlers, A., Petrovskis, I., Tars, K., & Kazaks, A. (2013). Plasmid dimerization increases the production of hepatitis b core particles in e. Coli.

Biotechnology and Bioprocess Engineering, 18(5), 850-857. doi:10.1007/s12257-013-0188-5

15. Bjørsvik, H.-R., & Liguori, L. (2002). Organic processes to pharmaceutical chemicals based on fine chemicals from lignosulfonates. Organic Process Research & Development, 6(3), 279-290. doi:10.1021/op010087o

16. Boonchird, C., & Flegel, T. W. (1982). In vitro antifungal activity of eugeneol and vanillin against candida albicans and cryptococcus neoformans. Can J Microbiol, 28(11), 1235-1241.

17. Calisti, C., Ficca, A. G., Barghini, P., & Ruzzi, M. (2008). Regulation of ferulic catabolic genes in pseudomonas fluorescens bf13: Involvement of a marr family regulator. Applied Microbiology and Biotechnology, 80(3), 475-483.

doi:10.1007/s00253-008-1557-4

18. Converti, A., Aliakbarian, B., Dominguez, J. M., Bustos Vazquez, G., & Perego, P. (2010). Microbial production of biovanillin. Braz J Microbiol, 41(3), 519- 530. doi:10.1590/s1517-83822010000300001

19. Di Gioia, D., Luziatelli, F., Negroni, A., Ficca, A. G., Fava, F., & Ruzzi, M. (2010). Metabolic engineering of pseudomonas fluorescens for the production of vanillin from axit ferulic. J Biotechnol, 156(4), 309-316.

doi:10.1016/j.jbiotec.2011.08.014

20. Dignum, M. J. W., Kerler, J., & Verpoorte, R. (2001). Vanilla production: Technological, chemical, and biosynthetic aspects. Food Reviews International, 17(2), 119-120. doi:10.1081/FRI-100000269

21. Durant, S., & Karran, P. (2003). Vanillins--a novel family of ADN-pk inhibitors.

Nucleic Acids Res, 31(19), 5501-5512.

22. Edlin, D. A. N., Narbad, A., Gasson, M. J., Dickinson, J. R., & Lloyd, D. (1998). Purification and characterization of hydroxycinnamate decarboxylase from brettanomyces anomalus. Enzyme and Microbial Technology, 22(4), 232-239. doi:http://dx.doi.org/10.1016/S0141-0229(97)00169-5

23. Fitzgerald, D. J., Stratford, M., Gasson, M. J., & Narbad, A. (2005). Structure- function analysis of the vanillin molecule and its antifungal properties. J Agric

Food Chem, 53(5), 1769-1775. doi:10.1021/jf048575t

24. Furia, T. E., & Bellanca, N. (1975). Fenaroli's handbook of flavor ingredients: C R C Press LLC.

25. Gasson, M. J., Kitamura, Y., McLauchlan, W. R., Narbad, A., Parr, A. J., Parsons, E. L., . . . Walton, N. J. (1998). Metabolism of axit ferulic to vanillin. A bacterial gene of the enoyl-scoa hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid scoa thioester. J Biol Chem, 273(7), 4163-4170.

26. Gupta, J., Hamp, S., Buswell, J., & Eriksson, K.-E. (1981). Metabolism of trans- axit ferulic by the white-rot fungus sporotrichum pulverulentum. Archives of

Microbiology, 128(4), 349-354. doi:10.1007/BF00405911

27. Gustafson, D. L., Franz, H. R., Ueno, A. M., Smith, C. J., Doolittle, D. J., & Waldren, C. A. (2000). Vanillin (3-methoxy-4-hydroxybenzaldehyde) inhibits mutation induced by hydrogene peroxide, n-methyl-n-nitrosoguanidine and mitomycin c but not 137cs γ-radiation at the cd59 locus in human–hamster hybrid al cells. Mutagenesis, 15(3), 207-213. doi:10.1093/mutage/15.3.207 28. Havkin-Frenkel, D., & Belanger, F. (2007). Application of metabolic engineering

Alfermann, & T. S. Johnson (Eds.), Applications of plant metabolic engineering (pp. 175-196): Springer Netherlands.

29. Havkin-Frenkel, D., & Belanger, F. (2010). Handbook of vanilla science and technology: Wiley.

30. Havkin-Frenkel, D., Podstolski, A., & Knorr, D. (1996). Effect of light on vanillin precursors formation by in vitro cultures of vanilla planifolia. Plant Cell, Tissue and Organ Culture, 45(2), 133-136. doi:10.1007/BF00048756

31. Hopp, R., & Rabenhorst, J. (2000). Process for the preparation of vanillin and microorganisms suitable therefor: Google Patents.

32. Huang, Z., Dostal, L., & Rosazza, J. P. (1993a). Mechanisms of axit ferulic conversions to vanillic acid and guaiacol by rhodotorula rubra. J Biol Chem,

268(32), 23954-23958.

33. Huang, Z., Dostal, L., & Rosazza, J. P. (1993b). Microbial transformations of axit ferulic by saccharomyces cerevisiae and pseudomonas fluorescens. Appl Environ Microbiol, 59(7), 2244-2250.

34. Jones, K. L., Kim, S. W., & Keasling, J. D. (2000). Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab Eng, 2(4), 328-338. doi:10.1006/mben.2000.0161

35. Kamat, J., Ghosh, A., & Devasagayam, T. A. (2000). Vanillin as an antioxidant in rat liver mitochondria: Inhibition of protein oxidation and lipid peroxidation induced by photosensitization. Molecular and Cellular Biochemistry, 209(1-

2), 47-53. doi:10.1023/A:1007048313556

36. Kamoda, S., Habu, N., Samejima, M., & Yoshimoto, T. (1989). Purification and some properties of lignostilbene-?,?-dioxygenease responsible for the c?-c? Cleavage of a diarylpropane type lignin model compound from pseudomonas sp. Tmy1009. Agricultural and biological chemistry, 53(10), 2757-2761. 37. Kanski, J., Aksenova, M., Stoyanova, A., & Butterfield, D. A. (2002). Axit ferulic

antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: Structure-activity studies. The Journal of nutritional biochemistry, 13(5), 273-281.

38. Keen, H., Glynne, A., Pickup, J. C., Viberti, G. C., Bilous, R. W., Jarrett, R. J., & Marsden, R. (1980). Human insulin produced by recombinant ADN

technology: Safety and hypoglycaemic potency in healthy men. Lancet, 2(8191), 398-401.

39. Kirk, R. E., & Othmer, D. F. (1983). Kirk-othmer encyclopedia of chemical technology: Sulfonation and sulfation to thorium and thorium compounds: Wiley.

40. Knuth, M. E., & Sahai, O. P. (1991). Flavor composition and method: Google Patents. 41. Krueger DA, K. H. (1985). Detection of fraudulent vanillin labeled with 13c in

the carbonyl carbon. J. Agric Food Chem, 33, 323-325.

42. Kumar, R., Sharma, P. K., & Mishra, P. S. (2012). Cheminform abstract: Vanillin derivatives showing various biological activities. ChemInform, 43(28), no-no. doi:10.1002/chin.201228263

43. Lee, E. G., Yoon, S. H., Das, A., Lee, S. H., Li, C., Kim, J. Y., . . . Kim, S. W. (2009). Directing vanillin production from axit ferulic by increased acetyl-coa consumption in recombinant escherichia coli. Biotechnol Bioeng, 102(1), 200- 208. doi:10.1002/bit.22040

44. Lomascolo, A., Stentelaire, C., Asther, M., & Lesage-Meessen, L. (1999). Basidiomycetes as new biotechnological tools to generate natural aromatic flavours for the food industry. Trends in biotechnology, 17(7), 282-289.

45. López-Malo, A., Alzamora, S. M., & Argaiz, A. (1995). Effect of natural vanillin on germination time and radial growth of moulds in fruit-based agar systems.

Food Microbiology, 12(0), 213-219. doi:http://dx.doi.org/10.1016/S0740-

0020(95)80100-6

46. Luziatelli, F., & Ruzzi, M. Genetic engineering of escherichia coli to enhance biological production of vanillin from axit ferulic.

47. Makni, M., Chtourou, Y., Barkallah, M., & Fetoui, H. (2012). Protective effect of vanillin against carbon tetrachloride (ccl4)-induced oxidative brain injury in rats. Toxicology and Industrial Health, 28(7), 655-662. doi:10.1177/0748233711420472

48. Markus, P. H., Peters, A. L., & Roos, R. (1994). Process for the preparation of phenylaldehydes: Google Patents.

49. Martínez-Cuesta, M. d. C., Payne, J., Hanniffy, S. B., Gasson, M. J., & Narbad, A. (2005). Functional analysis of the vanillin pathway in a vdh-negative mutant strain of pseudomonas fluorescens an103. Enzyme and Microbial Technology,

50. Mathew, S., & Abraham, T. E. (2006). Bioconversions of axit ferulic, an hydroxycinnamic acid. Crit Rev Microbiol, 32(3), 115-125. doi:10.1080/10408410600709628

51. Muheim, A., & Lerch, K. (1999). Towards a high-yield bioconversion of axit ferulic to vanillin. Applied Microbiology and Biotechnology, 51(4), 456-461.

doi:10.1007/s002530051416

52. Muheim, A., MÜLLER, B., Münch, T., & Wetli, M. (2012). Process for the production of vanillin: Google Patents.

53. Narbad, A., & Gasson, M. J. (1998). Metabolism of axit ferulic via vanillin using a novel coa-dependent pathway in a newly-isolated strain of pseudomonas fluorescens. Microbiology, 144 ( Pt 5), 1397-1405.

54. Nausch, H., Huckauf, J., Koslowski, R., Meyer, U., Broer, I., & Mikschofsky, H. (2013). Recombinant production of human interleukin 6 in escherichia coli.

PLoS One, 8(1), e54933. doi:10.1371/journal.pone.0054933

55. Ner, S. S., Bhayana, V., Bell, A. W., Giles, I. G., Duckworth, H. W., & Bloxham, D. P. (1983). Complete sequence of the glta gene encoding citrate synthase in escherichia coli. Biochemistry, 22(23), 5243-5249. doi:10.1021/bi00292a001 56. Ngarmsak, M., Delaquis, P., Toivonen, P., Ngarmsak, T., Ooraikul, B., & Mazza,

G. (2006). Antimicrobial activity of vanillin against spoilage microorganisms in stored fresh-cut mangoes. J Food Prot, 69(7), 1724-1727.

57. Odoux, E., Escoute, J., Verdeil, J. L., & Brillouet, J. M. (2003). Localization of beta-d-glucosidase activity and glucovanillin in vanilla bean (vanilla planifolia andrews). Ann Bot, 92(3), 437-444. doi:10.1093/aob/mcg150

58. Ou, S., & Kwok, K.-C. (2004). Axit ferulic: Pharmaceutical functions, preparation and applications in foods. Journal of the science of food and agriculture, 84(11), 1261-1269. doi:10.1002/jsfa.1873

59. Overhage, J., Priefert, H., & Steinbuchel, A. (1999). Biochemical and genetic analyses of axit ferulic catabolism in pseudomonas sp. Strain hr199. Appl Environ Microbiol, 65(11), 4837-4847.

60. Overhage, J., Steinbuchel, A., & Priefert, H. (2003). Highly efficient biotransformation of eugeneol to axit ferulic and further conversion to vanillin in recombinant strains of escherichia coli. Appl Environ Microbiol, 69(11),

61. Plaggeneborg, R., Overhage, J., Loos, A., Archer, J. C., Lessard, P., Sinskey, A., . . . Priefert, H. (2006). Potential of rhodococcus strains for biotechnological vanillin production from axit ferulic and eugeneol. Applied Microbiology and

Biotechnology, 72(4), 745-755. doi:10.1007/s00253-005-0302-5

62. Plaggeneborg, R., Overhage, J., Steinbüchel, A., & Priefert, H. (2003). Functional analyses of genes involved in the metabolism of axit ferulic in pseudomonas putida kt2440. Applied Microbiology and Biotechnology, 61(5-6), 528-535.

doi:10.1007/s00253-003-1260-4

63. Plaggeneborg, R., Steinbuchel, A., & Priefert, H. (2001). The coenzyme a- dependent, non-beta-oxidation pathway and not direct deacetylation is the major route for axit ferulic degradation in delftia acidovorans. FEMS Microbiol Lett, 205(1), 9-16.

64. Rabenhorst, J. D., & Hopp, R. D. (1997). Verfahren zur herstellung von vanillin und dafür geeignete mikroorganismen: Google Patents.

65. Ramachandra Rao, S., & Ravishankar, G. A. (2000). Vanilla flavour: Production by conventional and biotechnological routes. Journal of the science of food and agriculture, 80(3), 289-304.

66. Ranadive, A. S. (1994). Vanilla--cultivation, curing, chemistry, technology and commercial products. Developments in food science., 34, 517-577.

67. Ravendra, K., Sharma, P. K., & Prem Shanker, M. (2012). Cheminform abstract: Vanillin derivatives showing various biological activities. ChemInform, 43(28). doi:10.1002/chin.201228263

68. Rezaei, M., & Zarkesh-Esfahani, S. H. (2012). Optimization of production of recombinant human growth hormone in escherichia coli.

69. Rosazza, J. P. N., Huang, Z., Dostal, L., Volm, T., & Rousseau, B. (1995). Review: Biocatalytic transformations of axit ferulic: An abundant aromatic natural product. Journal of Industrial Microbiology, 15(6), 457-471.

doi:10.1007/BF01570016

70. Shimoni, E., Ravid, U., & Shoham, Y. (2000). Isolation of a bacillus sp. Capable of transforming isoeugeneol to vanillin. J Biotechnol, 78(1), 1-9.

71. Sinha, A. K., Sharma, U. K., & Sharma, N. (2008). A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others

constituents. Int J Food Sci Nutr, 59(4), 299-326. doi:10.1080/09687630701539350

72. Srinivasan, M. R., & Chandrasekhara, N. (1992). Comparative influence of vanillin & capsaicin on liver & blood lipids in the rat. Indian J Med Res, 96, 133-135.

73. Sutherland, J. B., Crawford, D. L., & Pometto, A. L., 3rd. (1983). Metabolism of cinnamic, p-coumaric, and axit ferulics by streptomyces setonii. Can J Microbiol, 29(10), 1253-1257.

74. Tawatsin, A., Wratten, S. D., Scott, R. R., Thavara, U., & Techadamrongsin, Y. (2001). Repellency of volatile oils from plants against three mosquito vectors.

J Vector Ecol, 26(1), 76-82.

75. Torre, P., De Faveri, D., Perego, P., Ruzzi, M., Barghini, P., Gandolfi, R., & Converti, A. (2004). Bioconversion of ferulate into vanillin by escherichia coli strain jm109/pbb1 in an immobilized-cell reactor. Annals of microbiology, 54(4), 517-527.

76. Vaghasiya, Y. K., Nair, R., Soni, M., Baluja, S., & Shanda, S. (2004). Synthesis, structural determination and antibacterial activity of compounds derived from vanillin and 4-aminoantipyrine. Journal of the Serbian Chemical Society, 69(12), 991-998.

77. van den Heuvel, R. H., Fraaije, M. W., Laane, C., & van Berkel, W. J. (2001). Enzymatic synthesis of vanillin. J Agric Food Chem, 49(6), 2954-2958. 78. Venturi, V., Zennaro, F., Degrassi, G., Okeke, B. C., & Bruschi, C. V. (1998).

Genetics of axit ferulic bioconversion to protocatechuic acid in plant-growth- promoting pseudomonas putida wcs358. Microbiology, 144(4), 965-973.

doi:10.1099/00221287-144-4-965

79. Walton, N. J., Mayer, M. J., & Narbad, A. (2003). Vanillin. Phytochemistry, 63(5), 505-515.

80. Westcott, R. J., Cheetham, P. S. J., & Barraclough, A. J. (1993). Use of organized viable vanilla plant aerial roots for the production of natural vanillin.

Phytochemistry, 35(1), 135-138. doi:http://dx.doi.org/10.1016/S0031- 9422(00)90521-1

81. Xu, P., Hua, D., & Ma, C. (2007). Microbial transformation of propenylbenzenes for natural flavour production. Trends Biotechnol, 25(12), 571-576.

82. Yamada, M., Okada, Y., Yoshida, T., & Nagasawa, T. (2007). Biotransformation of isoeugeneol to vanillin by pseudomonas putida ie27 cells. Applied Microbiology

and Biotechnology, 73(5), 1025-1030. doi:10.1007/s00253-006-0569-1

83. Yamada, M., Okada, Y., Yoshida, T., & Nagasawa, T. (2008). Vanillin production using escherichia coli cells over-expressing isoeugeneol monooxygenease of pseudomonas putida. Biotechnol Lett, 30(4), 665-670.

doi:10.1007/s10529-007-9602-4

84. Yoon, S.-H., Li, C., Lee, Y.-M., Lee, S.-H., Kim, S.-H., Choi, M.-S., . . . Kim, S.- W. (2005). Production of vanillin from axit ferulic using recombinant strains ofescherichia coli. Biotechnology and Bioprocess Engineering, 10(4), 378-

384. doi:10.1007/BF02931859

85. Yoon, S. H., Lee, E. G., Das, A., Lee, S. H., Li, C., Ryu, H. K., . . . Kim, S. W.

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu tạo chủng escherichia coli có khả năng sản xuất vanillin từ axit ferulic (Trang 94)

Tải bản đầy đủ (PDF)

(103 trang)