Mô hình hồi quy tuyến tính bằng phương pháp Enter được thực hiện với một số giả định và mô hình chỉ thực sự có ý nghĩa khi các giả định này được đảm bảo. Do vậy, để đảm bảo cho độ tin cậy của mô hình, đề tài còn phải thực hiện một loạt các dò tìm sự vi phạm các giả định cần thiết trong hồi quy tuyến tính.
Đào tạo và phát triển Kỳ vọng Đồng nghiệp Mức độ hài lòng đối với công việc
Đầu tiên cần xem xét là phương sai của phần dư không đổi. Để thực hiện kiểm định này, chúng ta sẽ tính hệ số tương quan hạng Spearman của giá trị tuyệt đối phần dư và các biến độc lập. Giá trị sig. của các hệ số tương quan với độ tin cậy 95% cho thấy không đủ cơ sở để bác bỏ giả thuyết H0 là giá trị tuyệt đối của phần dư độc lập với các biến độc lập. Như vậy, giả định về phương sai của sai số không đổi không bị vi phạm.
Để dò tìm sự vi phạm giả định phân phối chuẩn của phần dư ta sẽ dùng công cụ Frequencies của phần mềm SPSS để kiểm định ta có kết quả sau:
Statistics thoa man Valid 201 N Missing 0 Mean 3,8896 Median 4,0000 Std. Deviation ,54840 Skewness -,774 Std. Error of Skewness ,172
Theo kết quả trên ta thấy giá trị trung bình (mean) = 3,8896 và trung vị (median) = 4 gần bằng nhau và skewness = - 0,774 nằm trong khoảng từ -1 đến +1 nên dữ liệu phần dư có phân phối chuẩn ( Kiểm định phân phối chuẩn phần dư - TS. Nguyễn Ngọc Rạng ).
Giả định tiếp theo về tính độc lập của phần dư cũng cần được kiểm định. Ta dùng đại lượng thống kê Durbin-Watson (d) để kiểm định (Bảng 4.8). Đại lượng d này có giá trị từ 0 đến 4. Trong thực tế, khi tiến hành kiểm định Durbin- Watson người ta thường áp dụng quy tắc kiểm định đơn giản như sau: nếu 1 < d < 3 thì kết luận mô hình không có tương quan; nếu 0 < d <1 thì kết luận mô hình có sự tương quan dương; nếu 3 < d < 4 thì kết luận mô hình có sự tương quan âm. Từ kết quả ở trên ta có 1< d =1.601< 3 như vậy ta có thể kết luận mô hình có tương quan và tính độc lập của phần dư đã được bảo đảm.
Cuối cùng, ta sẽ xem xét sự vi phạm đa cộng tuyến của mô hình. Ở phần phân tích hệ số tương quan ở trên, ta đã thấy rằng giữa biến phụ thuộc có quan hệ tương quan khá rõ với các biến độc lập nhưng ta cũng thấy được giữa các biến độc lập cũng có
tương quan với nhau. Điều này sẽ tạo ra khả năng đa cộng tuyến của mô hình. Vì vậy, ta phải dò tìm hiện tượng đa cộng tuyến bằng cách tính độ chấp nhận của biến (Tolerance) và hệ số phóng đại phương sai (Variance inflation factor - VIF). Độ chấp nhận trong trường hợp này của năm biến trong mô hình khá cao, đều lớn hơn 0,5 trong khi hệ số VIF khá thấp đa số nhỏ hơn 10 (Bảng 4.10). Hệ số VIF nhỏ hơn 10 là ta có thể bác bỏ giả thuyết mô hình bị đa cộng tuyến (Hoàng Trọng-Chu Nguyễn Mộng Ngọc, 2005).
Như vậy mô hình hồi quy tuyến tính được xây dựng theo phương trình ở trên là không vi phạm các giả định cần thiết trong hồi quy tuyến tính. Để đánh giá độ phù hợp của mô hình ta sẽ dùng các công cụ như tính hệ số xác định hiệu chỉnh Adjusted R Square, kiểm định F và kiểm định t.
Trước tiên, hệ số xác định điều chỉnh của mô hình trên là 0,784 thể hiện sáu biến độc lập trong mô hình giải thích được 78,4% biến thiên của biến phụ thuộc sự hài lòng của người lao động. Với giá trị này thì độ phù hợp của mô hình là khá cao.
Ở trên sau khi đánh giá giá trị R square ta biết được mô hình hồi quy tuyến tính đã xây dựng là phù hợp với mẫu. Tuy nhiên để có thể suy diễn mô hình này thành mô hình của tổng thể ta cần phải tiến hành kiểm định F thông qua phân tích phương sai. Ta có sig. của F < 1/1000 nên ta có thể bác bỏ giả thuyết hệ số xác định của tổng thể bằng không. Điều này có nghĩa là có ít nhất một biến độc lập nào đó ảnh hưởng đến biến phụ thuộc.
Cuối cùng, để đảm bảo các biến độc lập đều thực sự có ảnh hưởng đến biến phụ thuộc, ta tiến hành kiểm định t. Với giả thuyết H0 là hệ số hồi quy của các biến độc lập βk = 0 và với độ tin cậy 95% kết quả ta đều có thể bác bỏ giả thuyết H0 đối với βk. Điều này có nghĩa là tất cả các nhân tố trong phương trình đều có ảnh hưởng đến sự thỏa mãn công việc.