Nguyễn Bỏ Vượng (2011), Nghiờn cứu sự thay đổi hoạt độ một số enzym chống oxy húa ở cụng nhõn tiếp xỳc nghề nghiệp vớ

Một phần của tài liệu Nghiên cứu sự biến đổi một số chỉ số chống oxy hóa ở người tiếp xúc nghề nghiệp với chì vô cơ, tác dụng bảo vệ của sâm ngọc linh trên động vật thực nghiệm (Trang 137 - 141)

- Phõn bố theo tuổi đời và tuổi nghề.

27. Nguyễn Bỏ Vượng (2011), Nghiờn cứu sự thay đổi hoạt độ một số enzym chống oxy húa ở cụng nhõn tiếp xỳc nghề nghiệp vớ

enzym chống oxy húa ở cụng nhõn tiếp xỳc nghề nghiệp với trinitrotoluen và động vật thực nghiệm-Tỏc dụng của Belaf, Luận ỏn tiến sĩ y học, Học viện Quõn y, Hà Nội.

TẾNG ANH

28. Acharya U. R., Rathore R. M., Mishra M. (2003), “Role of vitamin C

on lead acetate induced spermatogenesis in swiss mice”, Environmental Toxicology and Pharmacology, 13, pp. 9-14.

29. Adham M. L. (1997), “Renal effects of environmental and

occupational lead exposure”, Environmental Health Perspectives, 105 (9), pp. 928-939.

30. Ahamed M., Akhtar M. J., Verma S., et al. (2011), “Environmental

lead exposure as a risk for childhood aplastic anemia”, BioScience Trends, 5(1), pp. 38-43.

31. Ahamed M., Verma S., Kumar A., et al. (2005), “Environmental

exposure to lead and its correlation with biochemical indices in children”, Science of the Total Environment, 346, pp. 48-55.

32. Ahamed M., Verma S., Kumar A., et al. (2006), “Delta-

aminolevulinic acid dehydratase inhibition and oxidative stress in relation to blood lead among urban adolescents”, Human & Experimantal Toxicology, 25, pp. 547-553.

33. Ahamed M., Siddiqui M. K. J. (2007), “Low level lead exposure and

oxidative stress: Current opinions”, Clinica Chimica Acta, 383, pp. 57-64.

34. Almagor M., Kahane I., Yatziv S. (1984), “Role of superoxide anion

in host cell injury induced by mycoplasma pneumoniae infection”, A study in normal and trisomy 21 cells. The American Society for Clinical Investigation, 73, pp. 842-847.

35. Al-Neamy F. R. M., Almehdi A. M., Alwash R., et al. (2010), “Occupational lead exposure and amino acid profiles and liver function “Occupational lead exposure and amino acid profiles and liver function

tests in industrial workers”, International Journal of Environmental Health Research, 11(2), pp. 181-188.

36. Ariza M. E., Bijur G. N., Williams M. V. (1998), “Lead and mercury

mutagenesis: role of H2O2 , superoxide dismutase, and xanthine oxidase”, Environmetal andMolecular Mutagenesis, 31(4), pp. 352-361.

37. Baloh R. W. (1974), “Laboratory diaglosis of increased lead

absorption”, Arch Environ Health, 28(4), pp. 198-208.

38. Barry H., John M. C. G. (2001), “Antioxydant defences”. In: Free

Radicals in Biology and Medicine, Oxford University press, Third edition, pp. 225-231.

39. Bartosz G. (2005), “Superoxide dismutases and catalase”, in: The Handbook of Environmental Chemistry, 2, pp. 109-149. Handbook of Environmental Chemistry, 2, pp. 109-149.

40. Berrahal A. A., Lasram M., Elj N. E., et al. (2009), “Effect of age-

dependent exposure to lead on hepatotoxicity and nephrotoxicity in male rats”, Environmental Toxicolory, 26, pp. 68-78.

41. Birben E., Sahiner U. M., Sackesen C. (2012), “Oxidative stress and

antioxidant defense”, WAO Journal, 5, pp. 9-19.

42. Bokara K. K., Blaylock I., Denise S. B., et al. (2009), “Influence of

lead acetate on glutathione and its related enzyms in different regions of rat brain”, Journal of Applied Toxicology, 29(5), pp. 452-458.

43. Cadenas E., Boveris A. (2005), “Mitochondrial free radical

production, antioxidant defenses and cell signaling”, in: The Handbook of Environmental Chemistry, 2, pp. 219-234.

44. Calabrese E. J., Baldwin L. A., Leonard D. A., et al. (1995), “Decrease

in hepatotoxicity by lead exposure is not explained by its mitogenic response”, Journal of Applied Toxicology, 15(2), pp. 129-132.

45. Carbral de Oliveira A. C., Perez A. C., Merino G., et al. (2001),

“Protective effects of panax ginseng on muscle injury and inflamation after eccentric exercise”, Toxicology & Pharmacology,

130 (3), pp. 369-377.

methionine, δ-lipoic acid, N-acetylcysteine and homocysteine on lead- induced oxidative stress to erythrocytes in rats”, Experimental and Toxicologic Pathology, 60(4-5), pp. 289-294.

47. Celik A., Ogenler O., Comelekoglu U. (2005), “The evaluation of

micronucleus frequency by acridine orange fluorescent staining in perpheral blood of rats treated with lead acetate”, Mutagenesis, 20 (6), pp. 411-415.

48. Chen X. (1996),Cardiovascular protection by ginsenosides and their

nitric oxide releasing action”, Clinical and Experimental Pharmacology and Physiology, 23, pp. 728-732.

49. Chen W., Ercal N., Tien Huynh., et al. (2012),Characterizing N-

acetylcysteine (NAC) and N- acetylcysteine amide (NACA) binding for lead poisoning treatment”, Journal of Colloid and Interface Science, 371, pp. 144-149.

50. Chiba M., Shinohara A., Matsushita K., et al. (1996), “Indices of lead-

Exposure in blood and urine of lead- Exposed workers and concentrations of major and trace elements and activities of SOD, GSH- Px and catalase in their blood”, Tohoku J. Exp. Med, 178, pp. 49-62.

51. Conterato G. M. M., Bulcao R. P., Sobieski R., et al. (2013), “Blood

thioredoxin reductase activity, oxidative stress and hematological parameters in painters and battery workers: relationship with lead and cadmium levels in blood”, Journal of Applied Toxicoogyl, 33, pp. 142-150.

52. Cramer K., Goyer R. A., Jagenburg R., et al. (1974), “Renal ultrastructure, renal function, and parameters of lead toxicity in workers ultrastructure, renal function, and parameters of lead toxicity in workers with different periods of lead exposure”, British Journal of Industrial Medicine, 31, pp. 113-127.

53. Cristine A. C., Gilmar C. T., Adriana M. P. P., et al. (1997), “Correlation between plasma 5- aminolevulinic acid concentrations and “Correlation between plasma 5- aminolevulinic acid concentrations and indicators of oxidative stress in lead-exposed workers”, Clinical

Chemistry, 43(7), pp. 1196-1202.

54. Daxian Z., Yasuda T., Yu. Y., et al. (1996), “Ginseng extact scavenges

hydroxyl radical and protects unsaturated fatty acid from decomposition cause by iron- mediated lipid peroxidation”, Free Radical Biology and Medicine, 20 (1), pp. 145-150.

55. De Souza A., Narvencar K. P. S., Desai P. K., et al. (2013), “Adult

lead encephalopathy”, Neurological Research, 35 (1), pp. 54-58.

56. Dewanjee S., Sahu R., Karmakar S., et al. (2013), “Toxic effects of

lead exposure in Wistar rats: Involvement of oxidative stress and 3 the beneficial role of edible jute (Corchorus olitorius) leaves”, Food and Chemical Toxicology, pp. 270-277.

57. Dioka C. E., Orisakwe O. E., Adeniyi F. A. A., et al. (2004), “Liver

and renal function tests in artisans occupationally exposed to lead in mechanic villige in Nnewi, Nigeria”, International Journal of Environmental Research and Public Health, 1, 21-25.

58. El-Sayed I. H., Lotfy M., El-Khawaga O. Y., et al. (2006), “Prominent free radicals scavenging activity of tannic acid in lead- “Prominent free radicals scavenging activity of tannic acid in lead- induced oxidative stress in experimental mice”, Toxicology and Industrial Health, 22, pp. 157-163.

59. Ergurhan-Ilhan I., Cardi B., Arslan M. K., et al. (2008), “Level of

oxidative stress and damage in erythrocytes in apprentices indirectly exposed to lead”, Pediatrics International, 50, pp. 45-50.

60. Fandrowski J. J., Acien A. N., Plaza M. T., et al. (2010), “Blood lead level and kidney function in US adolescents”, Arch Intern Med, 170(1), pp. 75-82. and kidney function in US adolescents”, Arch Intern Med, 170(1), pp. 75-82.

61. Flora G., Gupta D., Tiwari A. (2013), “Preventive efficacy of bulk

and nanocurcumin against lead-induced oxidative stress in mice”, Biol Trace Elem Res, 152, pp. 31-40.

62. Flora S. J., Mittal M., Mehta A. (2008), "Heavy metal induced oxidative stress & its possible reversal by chelation therapy", The oxidative stress & its possible reversal by chelation therapy", The

Indian Journal of Medical Research, 128 (4), pp. 501-523.

63. Flora S. J., Gautam P., Kushwaha P. (2012), “Lead and ethanol Co-

exposure lead to blood oxidative stress and subsequent neuronal apoptosis in rats”, Alcohol and Alcoholism, 47 (2), pp 92-101.

64. Fracasso M. E., Perbellini L., Soldà S., et al. (2002), “Lead induced DNA

strand breaks in lymphocytes of exposed workers: role of reactive oxygen species and protein kinase C”, Mutation Research, 515, pp. 159-169.

65. Garcon G., Leleu B., Zerimech F., et al. (2004), “Biologic markers of

oxidative stress and nephrotoxicity as studied in biomonitoring of adverse effects of occupational exposure to lead and cadmium”,

Journal of Occupational Environment Medicine, 46, pp. 1180-1186.

66. Gautam P., Flora S. J. S. (2010), “Oral supplementation of gossypin

during lead exposure protects alteration in heme synthesis pathway and brain oxidative stress in rats”, Nutrition 26, pp. 563-570.

67. Gidlow D. A. (2004), “Lead toxicity”, Occupational Medicine, 54 (2), pp. 76-81. (2), pp. 76-81.

68. Griffiths H. R. (2005), “Chemical modifications of biomolecules by

oxidants”, in: The Handbook of Environmental Chemistry, 2, pp. 33-62.

69. Grune T., Schrệder P., Biesalski H. K. (2005), “Low molecular weight antioxidant”, in: The Handbook of Environmental Chemistry, weight antioxidant”, in: The Handbook of Environmental Chemistry, 2, pp. 77- 90.

70. Gurer H., Ercal N. (2000), “Can antioxidants be benefical in the treatmant of lead poisoning”, Free Radical Biology & Medicine, 29 (10), treatmant of lead poisoning”, Free Radical Biology & Medicine, 29 (10), pp. 927-945.

71. Gurer H., Ozgunens H., Neal R. (1998), “Antioxidant effects of N-

acetylcysteine and succimer in red blood cells from lead- exposed rats”,

Toxicology, 128(3), pp. 181-189.

Một phần của tài liệu Nghiên cứu sự biến đổi một số chỉ số chống oxy hóa ở người tiếp xúc nghề nghiệp với chì vô cơ, tác dụng bảo vệ của sâm ngọc linh trên động vật thực nghiệm (Trang 137 - 141)

Tải bản đầy đủ (DOCX)

(159 trang)
w