Trong khi NSP là điều kiện cần và đủ thành lập đảm bảo của mẫu (***), những đảm bảo đó không tính đến nhiễu. Khi các phép đo bị nhiễm nhiễu hoặc đã bị lỗi bởi một số lỗi nhƣ lƣợng tử hóa, nó sẽ đƣợc dùng để xem xét điều kiện nào mạnh hơn. Candés và Tao giới thiệu các điều kiện sau đây phép đẳng cự trên ma trận A và thiết lập vai trò quan trọng của nó trong lấy mẫu nén.
Định nghĩa 1.3: Một ma trận A thỏa mãn tính chất giới hạn thuộc tính đẳng cự(restricted isometry property - RIP) trật tự nếu tồn tại một k (0, 1) sao cho
2 2 2
2 2 2
(1k) || ||x || A ||x (1 k) || ||x (4*)
Với tất cả các giá trị x k
Nếu một ma trận A thỏa mãn điều kiện RIP trật tự 2 , sau đó chúng ta có thể giải thích (4*) nói rằng A giữ một khoảng cách giữa bất kỳ cặp vectơ -thƣa thớt. Điều này rõ ràng có tác động cơ bản liên quan mạnh mẽ đến nhiễu. Hơn nữa, các ứng dụng tiềm năng nhƣ sự đƣa vào ổn định dao động vƣợt xa việc thu lại với mục đích duy nhất là khôi phục lại tín hiệu.
Điều quan trọng cần lƣu ý là trong khi ở định nghĩa của chúng ta về RIP chúng tôi giả định rằng giới hạn là đối xứng khoảng 1, điều này chỉ đơn thuần là để thuận tiện cho việc chú thích. Trong thực tế, một có thể đƣợc xem xét thay đổi tùy ý
2 2 2
2 2 2
|| || || A ||x x || ||x
trong đó 0 < <1. Khi đƣa ra bất kỳ giới hạn nhƣ vậy, ngƣời ta luôn luôn có thể quy mô A để nó thỏa mãn sự đối xứng bị ràng buộc về 1 trong (4*). Nói một cách cụ thể, nhân A với 2 / ( ) sẽ cho kết quả trong mỗi ̃ thỏa mãn (4*) với hằng số
( ) ( ) k
. Trong khi chúng tôi sẽ không rõ ràng cho điều này, ngƣời ta có thể kiểm
GVHD:PGS.TS Nguyễn Thúy Anh SVTH:Đoàn Khánh Linh30
điều kiện RIP miễn là có tồn tại một số chuẩn lấy mẫu của A mà thỏa mãn điều kiện RIP. Nhƣ vậy, chúng tôi luôn luôn có chuẩn lấy mẫu A thỏa mãn (4*), chúng ta không mất đi bởi việc hạn chế sự chú ý của chúng tôi để sự ràng buộc này đơn giản hơn.
Cũng lƣu ý rằng nếu A thỏa mãn RIP trật tự k với hằng số k, Sau đó cho bất kỳ k’< k chúng ta tự động có A thỏa mãn RIP của k’ hàng với hằng số k’ k. Hơn nữa, nếu A thỏa mãn RIP trật tự với mỗi hằng số đủ nhỏ, sau đó nó cũng sẽ tự động đáp ứng các điều kiện RIP cho chính xác của hàng, mặc dù với một vài hằng số nào thấp hơn.
Bổ đề 1.1: Giả sử rằng A thỏa mãn điều kiện RIP của hàng với k không đổi. là một số nguyên dƣơng. Sau đó, A thỏa mãn RIP của k’ = [k/2] hàng với hằng số
k’< . k.
Trong bổ đề này thông thƣờng cho =1,2, nhƣng khi cho 3 (và k 4) điều này cho phép chúng ta mở rộng từ điều kiện RIP trật tự k đến số hàng cao hơn. Tuy nhiên cần lƣu ý rằng, k phải có số hàng đủ nhỏ để có đƣợc kết quả nhƣ mong muốn.
2.5.2.1 Điều kiện RIP và sự ổn định
Chúng ta sẽ thấy tại những phần sau, rằng nếu một ma trận A thỏa mãn điều kiện RIP, điều này sẽ phù hợp cho một loạt các thuật toán để có thể phục hồi thành công một tín hiệu thƣa thớt từ các phép đo nhiễu. Điều kiện này quan trọng nhất, tuy nhiên, chúng tôi sẽ xem xét kỹ hơn liệu RIP có thực sự cần thiết. Rõ ràng rằng sự ràng buộc thấp hơn trong RIP là một điều kiện cần thiết nếu chúng ta muốn phục hồi tất cả các tín hiệu thƣa thớt từ các phép đo Ax vì những lý do thực sự cần thiết tƣơng tự với NSP. Chúng ta có thể nói nhiều hơn về sự cần thiết của RIP bằng cách xem xét các khái niệm sau đây của sự ổn định.
Định nghĩa 1.4: Cho ma trận A: n m
biểu thị một ma trận cảm biến và ma trận : m n biểu thị một thuật toán phục hồi. Chúng ta nói rằng cặp (A, ) là C-ổn định nếu cho bất kỳ x k và bất kỳ e m ta có:
GVHD:PGS.TS Nguyễn Thúy Anh SVTH:Đoàn Khánh Linh31
2 2
|| ( Ax e ) x|| C e|| ||
Định nghĩa này chỉ đơn giản nói rằng nếu chúng ta thêm một lƣợng nhỏ nhiễu vào các phép đo, khi đó tác động của nó trên các tín hiệu phục hồi sẽ không lớn tùy ý. Định lý 1.3 dƣới đây cho thấy sự tồn tại của bất kỳ thuật toán giải mã (có thể phi thực tế) mà có thể phục hồi ổn định từ các phép đo nhiễu đòi hỏi A thỏa mãn thấp hơn giới hạn của (4*) với một hằng số xác định bởi C.
Định lý 1.3: Nếu cặp (A, ) là C-ổn định, sau đó
2 2
1
|| ||x || A ||x
C (5*)
Với mọi x 2k
Chứng minh: cho mọi giá trị x,z k.Ta có khái niệm sau: A( ) 2 x z x e và A( ) 2 z x z e Và lƣu ý rằng ( ) 2 x z A x z Ax e Az e
Cho ̂ = (Ax+ex) = (Az+ez).Từ bất đẳng thức tam giác và từ khái niệm của C-ổn định, chúng ta có:
||x – z||=||x - ̂ + ̂ - z||2 ||x- ̂||2 + || ̂-z||2 C||ex||2 + C||ez||2 =C||Ax-Az||2
Vì điều này giữ cho mọi x,z k, ta có kết quả.
Lƣu ý C 1, chúng ta có A phải thỏa mãn điều kiện thấp hơn giới hạn của (4*), với
k=1-1/C2 0. Vì vậy, nếu chúng ta muốn giảm ảnh hƣởng của nhiễu trong tín hiệu đƣợc khôi phục thì chúng ta phải điều chỉnh A để nó thỏa mãn thấp hơn giới hạn (4*) với một hằng số cụ thể hơn.
GVHD:PGS.TS Nguyễn Thúy Anh SVTH:Đoàn Khánh Linh32
Ngƣời ta có thể phản ứng với kết quả này bằng cách cho rằng kể từ khi giới hạn trên là không cần thiết, chúng ta có thể tránh thiết kế lại A đơn giản bằng cách thay đổi tỷ lệ của A để sao cho A thỏa mãn điều kiện RIP với 2k<1, phiên bản sửa lại A sẽ thỏa mãn (5*) cho bất kỳ C không đổi. Việc thiết lập sự thay đổi của nhiễu là độc lập với sự lựa chọn của A, đây là một điểm hợp lệ - bởi tỷ lệ của A về cơ bản điều chỉnh tăng trên “tín hiệu” một phần của các phép đo, và nếu tăng mà đạt đƣợc điều này thì sẽ không ảnh hƣởng đến nhiễu, sau đó chúng ta có thể đạt đƣợc tỷ lệ cao tùy ý tín hiệu/nhiễu, vì vậy mà cuối cùng nhiễu là không đáng kể so với các tín hiệu.
Tuy nhiên, trong thực tế chúng ta thƣờng sẽ không thay đổi tỷ lệ của A một cách tùy tiện. Hơn nữa, việc kiểm soát nhiễu trong thực tế phụ thuộc vào A. Ví dụ, hãy xem xét trƣờng hợp nhiễu vector e biểu diễn cho nhiễu lƣợng tử đƣợc thực thi bởi một phạm vi lƣợng tử động hữu hạn với B bit.Giả sử các phép đo nằm trong khoảng [-T, T], và điều chỉnh để chụp khoảng lƣợng tử này. Nếu chúng ta thay đổi tỷ lệ của A bằng , sau đó chèn các phép đo vào giữa [- T, T], và chúng ta phải mở rộng phạm vi hoạt động của lƣợng tử ra . Trong trƣờng hợp này kết quả lỗi lƣợng tử thông thƣờng là e, và chúng tôi đã thu đƣợc giá trị không giảm trong các lỗi khôi phục.
2.5.2.2 giới hạn phép đo
Chúng tôi cũng có thể xét xem có bao nhiêu phép đo là cần thiết để đạt đƣợc điều kiện RIP. Nếu chúng ta bỏ qua những tác động của và chỉ tập trung vào các khía cạnh của vấn đề (N, M, K), sau đó chúng ta có thể thiết lập giới hạn thấp hơn đơn giản.
Định lý 1.4: Cho A là một ma trận thỏa mãn điều kiện RIP trật tự 2K với hằng số [0, 1/2]. Khi đó
M Cklog( ) Tại đó C= 1/2log(√ + 1) 0.28
Lƣu ý rằng các giới hạn để 1/2 là tùy ý và đƣợc thực hiện chỉ đơn thuần là để thuận tiện một chút cho sự thay đổi để argument thiết lập giới hạn cho tối đa cho để
GVHD:PGS.TS Nguyễn Thúy Anh SVTH:Đoàn Khánh Linh33
max với mọi max<1. Hơn nữa, mặc dù chúng tôi đã thực hiện tối thiểu nhất để tối ƣu hóa các hằng số, nhƣng vẫn không đáng chú ý, điều này cũng khá hợp lý.
Trong một số ít hƣớng dẫn chứng thiểu số, ngƣời ta có thể thiết lập một kết quả tƣơng tự (về sự phụ thuộc vào và ) bằng cách kiểm tra chiều rộng Gelfand của 1. Tuy nhiên, cả hai kết quả này và định lý 1.4 không nắm rõ sự phụ thuộc chính xác của m trên điều kiện RIP với liên tục nhƣ mong muốn. Để xác định số lƣợng phụ thuộc này, chúng ta có thể kế thừa những kết quả gần đây liên quan đến bổ đề Johnson - Lindenstrauss, có liên quan đến đầu vào bộ đêm của các điểm trong không gian thấp chiều. Cụ thể là, nó đƣợc hiển thị trong rằng nếu chúng tôi có đƣợc một tập điểm với p điểm và muốn gán các điểm trong m sao cho bình phƣơng khoảng cách 2 giữa bất kỳ cặp điểm đƣợc bảo toàn đến một hệ số của 1+ , Sau đó chúng ta phải có đó
0 2 log( ) c p m Tại đó c0>0 là một hằng số
Bổ đề Johnson - Lindenstrauss có liên quan chặt chẽ với RIP. Trong nó đƣợc hiển thị mà bất kỳ phƣơng pháp nào có thể đƣợc sử dụng để tạo ra một tổ hợp tuyến tính, khoảng cách an toàn đặt vào cho một tập điểm cũng có thể đƣợc sử dụng để xây dựng một ma trận thỏa mãn RIP. Hơn nữa, trong nó đƣợc hiển thị rằng nếu một ma trận A thỏa mãn RIP trật tự = c1 log (p) với hằng số , Sau đó A có thể đƣợc sử dụng để xây dựng một khoảng cách an toàn đầu vào cho điểm p với = 4. Kết hợp lại chúng tôi đƣợc 2 0 0 2 1 log( ) 16 c p c k m c
GVHD:PGS.TS Nguyễn Thúy Anh SVTH:Đoàn Khánh Linh34
Nhƣ vậy, cho dù rất nhỏ số phép đo cần thiết để đảm bảo rằng A thỏa mãn RIP trật tự k sẽ tỷ lệ thuận với k/ 2, cái mà có ý nghĩa lớn hơn Klog(N / K).
2.5.2.3 Mối quan hệ giữa RIP và NSP
Cuối cùng, chúng ta sẽ thấy rằng nếu một ma trận thỏa mãn RIP, sau đó nó cũng thỏa mãn NSP. Nhƣ vậy, RIP hoàn toàn mạnh hơn NSP.
Định lý 1.5. Giả sử rằng A thỏa mãn điều kiện RIP trật tự 2K với 2k<√ - 1. Sau đó, A thỏa mãn điều kiện NSP trật tự 2K với hằng số
2 2 2 1 (1 2) k k C
Việc chứng minh định lý này liên quan đến hai bổ đề hữu ích. Đầu tiên theo hƣớng trực tiếp từ bất đẳng thức tiêu chuẩn bằng cách liên kết một vector K - thƣa thớt đến một vector trong tập Rk.