Kiểm định hệ số tương quan Pearson dùng để kiểm tra mối liên hệ tuyến tính giữa các biến độc lập và biến phụ thuộc. Nếu các biến có tương quan chặt chẽ thì phải lưu ý đến vấn đề đa cộng tuyến khi phân tích hồi quy.
Trong SPSS, có thể kiểm định các giả thiết ở mức ý nghĩa nhỏ hơn 0,05 (SPSS phân biệt bằng cách đánh một dấu * ở cạnh giá trị thống kê tính được trên mẫu) và ở mức ý nghĩa nhỏ hơn 0,01 (phân biệt bằng hai dấu **)
- Pearson Correlation: hệ số tương quan Pearson
- Sig.(2-tailed): significant của kiểm định Pearson. Giả thiết H0: hệ số tương quan bằng 0. Do đó nếu Sig. này bé hơn 5% ta có thể kết luận được là hai biến có tương quan với nhau. Hệ số tương quan càng lớn tương quan càng chặt. nếu Sig. này lớn hơn 5% thì hai biến không có tương quan với nhau.
Vì một trong những điều kiện cần để phân tích hồi quy là biến độc lập phải có tương quan với biến phụ thuộc, nên nếu ở bước phân tích tương quan này biến độc lập không có tương quan với biến phụ thuộc thì ta loại biến độc lập này ra khỏi phân tích hồi quy.
Kết quả phân tích tương quan Pearson cho thấy một số biến độc lập có sự tương quan với nhau. Do đó khi phân tích hồi quy cần phải chú ý đến vấn đề đa cộng tuyến. Các biến độc lập có tương quan với biến phụ thuộc và do đó sẽ được đưa vào mô hình để giải thích cho biến phụ thuộc.
Đa cộng tuyến là trạng thái các biến độc lập có tương quan chặt chẽ với nhau. Vấn đề của hiện tượng cộng tuyến là chúng cung cấp cho mô hình những thông tin rất giống nhau, và rất khó tách rời ảnh hưởng của từng biến một đến biến phụ thuộc.