giáo trình giải tích 1 tô văn ban

Giáo trình giải tích 1 part 9 pps

Giáo trình giải tích 1 part 9 pps

... =1, a n = √ 1+ a n? ?1 (a n ) ϕ = lim n→∞ a n t n =  1+ 1 n  n +1 1 n +1 < ln  1+ 1 n  < 1 n a n =1+ 1 2 + ···+ 1 n −ln n (a n ) γ = lim n→∞ a n =0, 577 215 6649 ··· (a n ) a n +1 − a n ≤ 1 ...  ∈{ 1 10 , 1 100 , ··· , 1 10 n } N      n n +11     <, ∀n ≥ N   N  lim n→∞ n n +1 =1 N 1 √ n +1 < 0, 03, ∀n ≥ N lim n→∞ 1 √ n +1 =0 a n = 1 2 n a n =sin nπ 2 a n =10 n ... n→+∞ 1+ 2+···+ n √ 9n 4 +1 lim n→+∞ (  n 2 +5−  n 2 +3) lim n→+∞ √ n( √ n +1? ?? √ n +2) lim n→+∞  1 1.2 + 1 2.3 + ···+ 1 n(n +1)  lim n→+∞ (1 − 1 2 2 ) (1 − 1 3 2 ) ··· (1 − 1 n 2 ) lim n→+∞ 1+ a

Ngày tải lên: 01/08/2014, 00:20

12 325 0
Giáo trình giải tích 1 part 8 potx

Giáo trình giải tích 1 part 8 potx

...  n n? ?1 dx x =lnn ∞  k =1 1 k 2 =1+ 1 2 2 + 1 3 2 + ··· S n =1+ 1 2 2 + 1 3 2 + ···+ 1 n 2 ≤ 1+ 1 1.2 + 1 2.3 + ···+ 1 (n ? ?1) n ≤ 1+ 1 11 2 + 1 2 − 1 3 + ···+ 1 (n ? ?1) − 1 n < 2 − 1 n ∞ ... = 1 2 − 1 4 + 1 6 − 1 8 + 1 10 − 1 12 + ··· =0+ 1 2 − 0 − 1 4 +0+ 1 6 − 0 − 1 8 + ··· ln 2 + 1 2 ln 2 = (1 + 0) + (− 1 2 + 1 2 )+( 1 3 − 0) + ( 1 4 − 1 4 )+( 1 5 +0)+(− 1 6 + 1 6 )+··· =1+ 1 ... (1 ? ?1) + (1 ? ?1) + ···=0 1+ (? ?1+ 1)+(? ?1+ 1)+··· =1 ∞  k=0 a k σ : N → N ∞  k=0 a σ(k)  k a k S  k a σ(k) S ∞  k =1 (? ?1) k +1 k ln 2 ln 2 = 11 2 + 1 3 − 1 4 + 1 5 − 1 6 + 1 7 − 1 8 + ··· 1 2

Ngày tải lên: 01/08/2014, 00:20

12 250 0
Giáo trình giải tích 1 part 7 docx

Giáo trình giải tích 1 part 7 docx

... π  1 0 dx 1+ x 2 =arctanx| 1 0 = π 4 1 − q n +1 1 − q =1+ q + q 2 + ···+ q n q = −x 2 1 1+x 2 =1? ?? x 2 + x 4 − x 6 + ···+(? ?1) n x 2n + R n , R n = (? ?1) n +1 x 2n+2 1+ x 2 π 4 =1? ?? 1 3 + 1 5 − 1 6 + ... nghóa tích phân suy rộng b a f (x)dx = c1 a1 f (x)dx + a2 c1 f (x)dx + · · · + cn 1 an 1 −∞ ≤ a = a 1 < a2 < f (x)dx + an cn 1 f (x)dx trong đó ai < ci < ai +1 , với gỉa thiết các tích ... phải hội tụ 1 1 khi Ví dụ Do nguyên hàm của p là x (p − 1) xp 1 nên +∞ dx hội tụ khi và chỉ khi p > 1 p 1 0 1 x dx xp hội tụ khi và chỉ khi p = 1, và là ln |x| khi p = 1, p < 1 Nhận

Ngày tải lên: 01/08/2014, 00:20

12 284 0
Giáo trình giải tích 1 part 6 ppt

Giáo trình giải tích 1 part 6 ppt

... x(x 2 +1) 1 x 3 + x = A x + Bx + C x 2 +1 A, B, C 1 ≡ A(x 2 +1) +(Bx + C)x 1 ≡ (A + B)x 2 + Cx + A 1, x,x 2 , ··· A =1, C =0,A+ B =0 ⇔ A =1, B = ? ?1, C =0 1 x 3 + x = 1 x − x x 2 +1  x 3 + x +1 x 3 ... + E x 2 + x +1 1 x 5 − x 2 = 0 x − 1 x 2 + 1 3(x ? ?1) − x − 1 3(x 2 + x +1)  dx x 5 − x 2 = 1 x + 1 6 ln (x − 1) 2 x 2 + x +1 + 1 √ 3 arctan 2x +1 √ 3 + C  dx x 4 − x 2 − 2  (x +1) dx x 4 − x ... P I n =  x n ln xdx n = ? ?1 u =lnx ⇒ du = dx x dv = x n dx v = x n +1 n +1 I n = x n +1 n +1 ln x − 1 n +1  x n dx = x n +1 n +1 ln x − x n +1 (n +1) 2 + C n = ? ?1 I ? ?1 =  ln x x dx =  ln xd(ln

Ngày tải lên: 01/08/2014, 00:20

12 318 0
Giáo trình giải tích 1 part 5 ppsx

Giáo trình giải tích 1 part 5 ppsx

... min x √ 1 − x 2 . f(x)=x √ 1 − x 2 x ∈ [? ?1, 1] f [? ?1, 1] max, min x f  (x)=0 f(? ?1) ,f (1) f  (x)= 1 − 2x 2 √ 1 − x 2 =0 ⇔ x = ± 1 √ 2 f( 1 √ 2 )= 1 2 ,f(− 1 √ 2 )=− 1 2 ,f(? ?1) = 0,f( +1) = 0 f ... | = | e θ (n +1) ! |≤ 3 (n +1) !  =10 −3 n =6  =10 −6 n =9 lim x→+∞ (x − x 2 ln (1 + 1 x )) ln (1 + 1 x )) = 1 x − 1 2x 2 + o( 1 x 2 ) x − x 2 ln (1 + 1 x )= 1 2 + x 2 o( 1 x 2 ) → 1 2 x → +∞ lim ... ) 1 e x −x? ?1 1 ∞ y = (1+ x 2 ) 1 e x −x? ?1 ln y = ln (1 + x 2 ) e x − x − 1 0 0 lim x→0 ln y = lim x→0 2x 1+ x 2 e x − 1 = lim x→0 1 1+x 2 lim x→0 2x e x − 1 = lim x→0 2 e x =2 lim x→0 (1 + x 2 ) 1

Ngày tải lên: 01/08/2014, 00:20

12 316 0
Giáo trình giải tích 1 part 4 ppt

Giáo trình giải tích 1 part 4 ppt

... +1 1! n! (n + 1) ! ( 1) n cos θx 2n +1 x3 x2n 1 + · · · + ( 1) n 1 + x x− 3! (2n − 1) ! (2n + 1) ! x2n ( 1) n +1 cos θx 2n+2 x2 + · · · + ( 1) n + x 1 2! (2n)! (2n + 2)! ( 1) n xn +1 ... · · + ( 1) n 1 + x− 2 n (n + 1) (1. .. 1) (1 + θx)n +1 α(α − 1) · · · (α − n + 1) n x + 1 + αx + · · · + n! α(α − 1) · · · (α − n) (1 + θx)α−n 1 n +1 x (n + 1) ! ex = 1+ sin x ... (ln x)  = 1 x (sin x)  =cosx (cos x)  = −sin x (tan x)  = 1 cos 2 x ( x)  = − 1 sin 2 x (arcsin x)  = 11 − x 2 (arccos x)  = − 11 − x 2 (arctan x)  = 1 1+x 2 ( x)  = − 1 1+x 2 e x

Ngày tải lên: 01/08/2014, 00:20

12 291 0
Giáo trình giải tích 1 part 3 ppt

Giáo trình giải tích 1 part 3 ppt

... +1  n k ≤  1+ 1 x k  x k ≤  1+ 1 n k  n k +1 lim k→∞  1+ 1 k  k = e lim x→+∞ (1 + 1 x ) x = e lim x→−∞ (1+ 1 x ) x = lim y→+∞ (1? ?? 1 y ) −y = lim y→+∞ ( y y ? ?1 ) y = lim y→+∞ (1+ 1 y ? ?1 ... √ x +1) ( 3 √ x 2 + 3 √ x +1) = lim x? ?1 √ x +1 3 √ x 2 + 3 √ x +1) = √ 1+ 1 3 √ 1 2 + 3 √ 1+ 1) = 2 3 lim x→0 sin x x =1 lim x→∞ (1 + 1 x ) x = lim x→0 (1 + x) 1 x = e lim x→0 ln(x +1) x =1 lim ... − 1 = lim x→+∞ 8 +∞ =0 lim x? ?1 3 √ x − 1 √ x − 1 0 0 lim x? ?1 3 √ x − 1 √ x − 1 = lim x? ?1 3 √ x − 1 √ x − 1 ( 3 √ x 2 + 3 √ x +1) ( 3 √ x 2 + 3 √ x +1) ( √ x +1) ( √ x +1) = lim x? ?1 x − 1 x − 1

Ngày tải lên: 01/08/2014, 00:20

12 385 0
Giáo trình giải tích 1 part 2 ppt

Giáo trình giải tích 1 part 2 ppt

... a 1 10 ≤ x − a 0 < a 1 +1 10 [0, 1] x −a 0 0 ≤ x − a 0 − a 1 10 < 1 10 a 2 ∈{0, 1, ··· , 9} a 2 10 2 ≤ x − a 0 − a 1 10 < a 2 +1 10 2 n 0 ≤ x − a 0 − a 1 10 −···− a n 10 n < 1 10 ... ) s n =1+ 1+ 1 1.2 + 1 1.2.3 + ··· + 1 1.2 n < 1+ 1+ 1 2 + 1 2 2 + ···+ 1 2 n? ?1 < 3 lim s n = e t n =  1+ 1 n  n = n  k=0 n! k!(n − k)! 1 n k = n  k=0 1 k! n n n − 1 n n − k +1 n = ... n a n +1 = [10 n +1 (x − a 0 − a 1 10 −···− a n 10 n )] a n +1 ∈{0, 1, ··· , 9} 0 ≤ x − a 0 − a 1 10 −···− a n 10 n − a n +1 10 n +1 < 1 10 n +1 x n 0 ≤ x − x n < 1 10 n lim x n = x  • 1, 000

Ngày tải lên: 01/08/2014, 00:20

12 341 0
Giáo trình giải tích 1 part 1 pdf

Giáo trình giải tích 1 part 1 pdf

... 1, định nghóa 3xn? ?1 + 1 xn? ?1 xn = xn? ?1 lẻ xn? ?1 chẵn Chẳng hạn, với x0 = 17 ta có dãy: 17 , 52, 26, 13 , 40, 20, 10 , 5, 16 , 8, 4, 2, 1, 4, 2, 1, · · · Để ý số hạng dãy 1, sau dãy lặp: 1, 4, 2, 1, ... định nghóa x0 = 1, xn +1 = (n + 1) xn (n ≥ 1) Dãy đệ qui cấp : x0 ∈ R giá trị đầu, xn +1 = f (xn ) (n = 0, 1, · · · ), f hàm số cho trước Dãy Fibonacci : x0 = 0, x1 = 1, xn +1 = xn + xn? ?1 (n ≥ 2) dãy ... ĐẠI HỌC ĐÀ LẠT KHOA TOÁN - TIN HỌC TẠ LÊ LI GIẢI TÍCH (Giáo Trình) Lưu hành nội -Đà Lạt 2008 Hướng dẫn sinh viên đọc giáo trình Đây giáo trình Giải tích dành cho sinh viên năm thứ ngành Toán

Ngày tải lên: 01/08/2014, 00:20

12 361 1
Xây dựng lý thuyết và hệ thống bài tập phần tích phân cho giáo trình giải tích 1

Xây dựng lý thuyết và hệ thống bài tập phần tích phân cho giáo trình giải tích 1

... SÁNH PHẦN TÍCH PHÂN 10 3 .1 Phần lý thuyết 10 3 .1. 1 Cách tiếp cận khái niệm Tích phân 10 3 .1. 2 Định nghĩa tính chất Tích phân 15 3 .1. 3 Các phương pháp tính Tích phân ... biệt khía cạnh Giải tích 1. 5 Nhiệm vụ nghiên cứu  Tìm hiểu giáo trình giải tích sử dụng Khoa Vật lý số trường Đại học có đào tạo ngành Vật lý  Phân tích giáo trình so sánh với giáo trình nước ngồi, ... Vật lý, định thực luận văn dựa cấu trúc có [8] để phân tích so sánh phần Tích phân giáo trình nước [1] , [2] với giáo trình nước [10 ] cuối viết mẫu phần Tích phân dựa phân tích so sánh Chúng tơi

Ngày tải lên: 03/06/2016, 16:13

272 553 0
GIÁO TRÌNH GIẢI TÍCH 1   đh ĐÔNG á

GIÁO TRÌNH GIẢI TÍCH 1 đh ĐÔNG á

... 3D = 1 1 4 9 + A= 1 − 9C + 3D = 1 4 3D - 9C = 1 - 5 2 3 2 3D... C = 1 4  1 1  dy 1 1 1 1 = dy + dy + dy + dy  ∫ (1 − y 2 )2 ∫ 4 (1 − y)2 ∫ 4 (1 + y)2 ∫ 1 − y ∫ 1 + y ... + + + 2 2 (1 − y) (1 + y) 1 − y 1 + y = nên suy ra: A (1+ y)2 + B (1- y)2 + C (1- y) (1+ y)2 + D (1+ y) (1- y)2 = 1 ⇒ B= Cho: y = -1 1 4 1 4 y =1 ⇒ y=0 ⇒ A + B + C + D =1 y=2 ⇒ 9A ... 2a +a 1+ t2 I = (1 − a 2 ) ∫ dt (1 − a ) + t 2 (1 + a ) 2 2 1 − a t (1 + a ) d( ) 1+ a 1 a = (1 − a 2 ) 2  t (1 + a )  2 (1 − a ) (1 +    1 a  1+ a  t + C ; 1 a  1+ a x

Ngày tải lên: 24/08/2016, 13:34

82 403 0
Giáo trình giải tích 1 Chương 1 giới hạm hàm liên tục 1 biến

Giáo trình giải tích 1 Chương 1 giới hạm hàm liên tục 1 biến

... năm 2 019 Bộ mơn Tốn Trang Giải tích – Chương Trường ĐH GTVT TP.HCM CHƯƠNG GIỚI HẠN VÀ SỰ LIÊN TỤC CỦA HÀM MỘT BIẾN 1. 1 Hàm số biến số thực 1. 1 .1 Hàm số đồ thị hàm số a) Các ví dụ dẫn nhập: 1) Diện ... dụ 1. 7 Hàm y  x hàm chẵn; hàm y  x hàm lẻ Hình 1. 9 Đồ thị hàm số y  x Hình 1. 10 Đồ thị hàm số y  x3 Trang Giải tích – Chương Trường ĐH GTVT TP.HCM Ví dụ 1. 8 Xét tính chẵn, lẻ hàm số sau 1) ... sau: 1) f ( x)  x , x  [2, 2]  x ,  2) g ( x)   x ,  , x0  x  1, x  [2,3] x ? ?1 Giao diện phần mềm Mathematica 5.0 Trang Giải tích – Chương Trường ĐH GTVT TP.HCM Hình 1. 11 Giao

Ngày tải lên: 29/08/2021, 00:05

61 656 2
Giáo trình giải tích 1 phần 1   ts  vũ gia tề

Giáo trình giải tích 1 phần 1 ts vũ gia tề

... (Chủ biên) GIÁO TRÌNH Giải (ích NHÀ XUẤT BAN THONG TIN VA TRUYEN THONG MUC LUC Lời HÓI đÏẪN 55552: 222222 211 211 1 T12 2 .12 122 211 112 212 xe CHƯƠNG I: GIOTHAN CUA DAY SÓ . - HH 1. 1 SỐ thực ... DAY SÓ . - HH 1. 1 SỐ thực :2222 211 112 0 21 E1 ve 12 1. 1 .1 Các tính chất tập só thực - - 12 11 22, Tập số thie MO TONE siccsccnmernensenmmaaenevans 17 1. 1.3 Cae khoang $6 thue occccccsssssssssseesssecsssessssessseesssvessssees ... s6 thong dUNQ cccccccceesssssssseeessesssssssseeeeees 64 2 .1. 3 Hàm số sơ cấp 02002222 212 1 211 111 111 111 xe 75 2.2 Giới hạn hàm số 2.2 .1 Khái niệm giới hạn 2.2.2 Tính chất hàm có giới hạn 2.2.3

Ngày tải lên: 10/10/2023, 18:20

215 19 0
Giáo trình giải tich 3 part 1 docx

Giáo trình giải tich 3 part 1 docx

... GIẢI TÍCH 3 (Giáo Trình) Lưu hành nội bộ Y Đà Lạt 2008 Z R n k 4 I. Tích phân phụ thuộc tham số 1 Tích phân phụ thuộc tham số 1. 1 Định nghĩa ... 1] ì[, ]. Khi đó, tích phân I(t)= 1 0 f(x, t)dx liên tục trên [, ] . Nh-ng ta có lim t0 I(t) = lim t0 1 0 xt 2 e x 2 t 2 = 1 2 lim t0 1 0 e x 2 t 2 d(x 2 t 2 ) = 1 2 lim t0 (e t 2 1) = 1 ... <ta có | I(t) I(t 0 ) |<v( X) v(X) = . 5 Ví dụ. 1) Ta có lim t0 1 1 x 2 + t 2 dx = 1 1 |x|dx =1vì hàm x 2 + t 2 liên tục trên [1, 1] ì [, ]. 2) Khảo sát tính liên tục tại điểm (0 , 0)

Ngày tải lên: 01/08/2014, 00:20

10 426 1
Giáo trình giải tích 2 part 1 potx

Giáo trình giải tích 2 part 1 potx

... < 1 f k (x)=x k ϕ k (x)=a k ∞  k=0 a k S S(x)= ∞  k=0 a k x k |x| < 1 lim x? ?1 − S(x)=S ln 2 = 11 2 + 1 3 − 1 4 + 1 5 −···+ (? ?1) n +1 n +1 + R n π 4 =1? ?? 1 3 + 1 5 − 1 7 + 1 9 −···+ (? ?1) ... (? ?1) k x k +1 k +1 =ln (1+ x) |x| < 1 1 1+ x 2 = 1 1 − (−x 2 ) =1? ??x 2 + x 4 − x 6 + ···= ∞  k=0 (? ?1) k x 2k , |x| < 1 arctan x = x − x 3 3 + x 5 5 − x 7 7 + ···= ∞  k=0 (? ?1) k x 2k +1 2k +1 ... ∞  k =1 ka k (x − x 0 ) k? ?1   ∞  k=0 a k (x − x 0 ) k  dx = ∞  k=0 a k k +1 (x − x 0 ) k +1 + C  ∞  k=0 (? ?1) k x k = 1 1+x |x| < 1 ∞  k =1 (? ?1) k kx k? ?1 = − 1 (1 + x) 2 |x| < 1 ∞ 

Ngày tải lên: 01/08/2014, 00:20

10 318 0
Giáo trình phân tích khả năng vận dụng nguyên lý Flip and Flop trong vi mạch số phần 1 potx

Giáo trình phân tích khả năng vận dụng nguyên lý Flip and Flop trong vi mạch số phần 1 potx

... Xóa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 ... 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 15 0 1 2 Hình III .1. c  Ưu điểm: ... hay mạch chia cho 16 . Mạch đếm từ 0000 = 0 10 (Nếu được xóa trước khi có xung vào) lên tối đa 11 11 = 15 10 rồi tự động quay về đếm lại từ 0000 = 0 10 , bảng Hình (H.III .1. c) chỉ ra.

Ngày tải lên: 12/08/2014, 20:22

11 279 1
giáo trình giải tích chương 1  số thực

giáo trình giải tích chương 1 số thực

... +1 ≤ un < uq + 1 q !q  1 ... với un = 1 + 1 1 1 + + + 2 3 n Chứng minh: Tính: u 2 m − u m = 1+ = 1 1 1 1 11 1? ?? + + + + + + − 1+ + +  2 3 m m +1 2m  2 m 1 1 1 1 ... + (q + 1) n  q!   < uq +  1 1 1 1  q + 1 + (q + 1) 2 + + (q + 1) n − q  q!    111 (q + 1) n − q 1  q + 1 = uq + 1 q! 1 q +1 < uq +    1 1 1 = uq ... [...]... có: 1 1 1 1 1 1 un = 1+ + + + + + + + 1 2! 3! q ! (q + 1) ! n! = uq + 1 1 + + (q + 1) ! n! Toán cao cấp : 34 Giải tích = uq+  1 1 1 1  q + 1 + (q + 1) (q + 2)

Ngày tải lên: 19/11/2014, 13:57

89 443 1
Giáo trình kỹ thuật soạn thảo văn bản quản lý kinh tế và quản trị kinh doanh phần 1 – TS  nguyễn thế phán (chủ biên) (đh kinh tế quốc dân)

Giáo trình kỹ thuật soạn thảo văn bản quản lý kinh tế và quản trị kinh doanh phần 1 – TS nguyễn thế phán (chủ biên) (đh kinh tế quốc dân)

... Thông qua kỳ họp thứ 10 , Quốc hội khoá IX, ngày 12 tháng 11 năm 19 96; Luật Ban hành văn bản quy phạm pháp luật của Hội đồng nhân dân, Uỷ ban nhân dân số 31/ 2004/QH 11 ngày 03 tháng 12 năm 2004; Thông ... phủ ban hành ngày 28/9 /19 63; Thông tư số 02/BT của Bộ trưởng, Tổng thư ký Hội đồng Bộ trưởng ban hành ngày 19 /7 /19 89; Thông tư số 33/BT Bộ trưởng, Chủ nhiệm Văn phòng Chính phủ ngày 10 /12 /19 92, ... dẫn về hình thức văn bản và việc ban hành văn bản trong các cơ quan hành chính Nhà nước; Nghị định số 10 1/CP của Chính phủ, ban hành ngày 23/9 /19 97, Công văn số 900/VPCP-HC của Văn phòng Chính

Ngày tải lên: 18/06/2015, 10:44

151 609 4
Giáo trình giải tích hàm 1 biến trí dũng

Giáo trình giải tích hàm 1 biến trí dũng

... nn n(n? ?1) n? ?1 n +1 (n +1) n n n2 n =1 n ∞ e) n(ln n)p n =1 ∞ f) ln(n!) n =1 d) với p ∈ R 7) Xét hội tụ chuỗi đan dấu sau ∞ a) n =1 ∞ b) n =1 ∞ c) n =1 ∞ d) n=2 n +1 (? ?1) n n+2 (? ?1) n n2n +1 +n+2 (? ?1) n np ... 1. 1 1. 2 1. 3 TẬP HỢP 1. 1 .1 Các khái niệm mở đầu 1. 1.2 Các phép toán tập hợp 1. 1.3 Các tính chất phép toán 1. 1.4 Tích ... 1) Tìm tổng chuỗi số sau ∞ a) n =1 ∞ b) n =1 ∞ c) n =1 ∞ d) n =1 (? ?1) n? ?1 2n? ?1 2n +3n 6n 2n? ?1 2n n(n +1) (n+2) ∞ 2) Chứng minh chuỗi số n =1 a2n ∞ n =1 b2n hội tụ chuỗi số sau hội tụ ∞ |an bn | a) n=1

Ngày tải lên: 13/09/2019, 10:21

90 319 0
Giáo trình giải tích 2 (Chương 1: Hàm số nhiều biến số) - Nguyễn Thị Minh Ngọc

Giáo trình giải tích 2 (Chương 1: Hàm số nhiều biến số) - Nguyễn Thị Minh Ngọc

... , ) = 1. 01 Nếu ta sử dụng cơng thức được đưa ra bởi hàm số ở phương trình (2) để tính tổng sản phẩm trong năm 19 10 và 19 20 thì ta được giá trị (14 7,208) = 1. 01( 147) (19 4,407) = 1. 01( 194) ... từ (11 ) = ? ?1 Nếu = 1 thì y = 0 từ (10 ), vậy từ (11 ) được = ? ?1 Do đó f có thể có cực trị tại các điểm (0 ,1) , (0, -1) , (1, 0) và ( -1, 0) Tính các giá trị của f tại các điểm này, ta tìm được (0 ,1) = ... Dễ thấy từ (13 ) và (14 )] 1 = ; = − 1? ?? 1? ?? Do đó từ (15 ) ta có (? ?1) + + = (1 − ) (1 − ) (1 − ) Suy ra (1 − ) = ; − = ± √ , vậy ? ?11 Các giá trị này của tương ứng với các điểm (x,y,z): = 1? ? ( , √ ,− √

Ngày tải lên: 13/01/2020, 09:11

57 238 0

Bạn có muốn tìm thêm với từ khóa:

w