Kỹ thuật thiêu kết Plasma

Một phần của tài liệu NGHIÊN CỨU CHẾ TẠO VÀ TÍNH CHẤT TỪ CỦA HỆ HẠT NANO TỪ Fe, Co BẰNG PHƯƠNG PHÁP NGHIỀN CƠ NĂNG LƯỢNG CAO (Trang 78 - 81)

Trong phương pháp thiêu kết thông thường, việc sử dụng các nguồn năng lượng bên ngồi làm cho bột nóng lên tương đối chậm. Vì vậy, quá trình thiêu kết yêu cầu nhiệt độ thiêu kết cao và thời gian nung khá dài. Thực tế này dẫn đến sự gia tăng tiêu thụ năng lượng và chi phí sản xuất. Hơn nữa, cấu trúc vi mô của các sản phẩm thu được thường khá thô do sự tăng trưởng của hạt tỉ lệ thuận với nhiệt độ thiêu kết hoặc thời gian xử lý. Để khắc phục nhược điểm như vậy, một số phương pháp thiêu kết hiệu quả hơn đã được đề xuất trong những thập kỷ qua. Thiêu kết xung điện plasma (Spark Plasma Sintering - SPS) là một trong những phương pháp đó. SPS, cịn được gọi trong một số tài liệu là FAST (Field Assisted Sintering Technology) - thiêu kết có hỗ trợ bằng điện trường, là một phương pháp thiêu kết mới, đang dần được ứng dụng rộng rãi trong rất nhiều hệ vật liệu, đặc biệt là vật liệu có cấu trúc nano. Quá trình này được cải tiến từ quy trình ép nóng, trong đó dịng điện chạy trực tiếp qua khn ép và bột ép, thay vì sử dụng bộ phận gia nhiệt bên ngồi. Bằng cách sử dụng dịng xung điện dẫn đến sự tạo thành "hiệu ứng tia lửa plasma", do đó có thể đạt được tốc độ gia nhiệt rất nhanh trong thời gian rất ngắn. Điều này giảm đáng kể sự tăng trưởng kích thước hạt cũng như thời gian đạt tới trạng thái cân bằng, từ đó cho phép chế tạo được các vật liệu có thành phần và tính chất khơng thể chế tạo bằng phương pháp gia nhiệt thông thường, như các vật liệu cấu trúc nano, các vật liệu composit có thành phần đặc biệt…

Hình 2.21. Mơ tả ngun lý hoạt động của phương pháp SPS

Nguyên lý của phương pháp SPS được mơ tả trong Hình 2.21. Mẫu bột được đưa vào khn than chì được đặt bên trong buồng chân khơng. Dịng điện xung 1 chiều được đưa vào thơng qua pít-tơng ép và lớp lót khn bằng graphit. Trong q trình ép SPS, một dòng xung chạy qua bột (nếu dẫn điện) và xảy ra sự sinh nhiệt do hiệu ứng nhiệt Joule. Việc sử dụng dịng điện đưa vào có điện áp thấp (~10V), cường độ dòng cao (~1500A) cùng với lực ép cơ học đã tạo ra vật liệu ở nhiệt độ thấp hơn nhiệt độ nóng chảy, nhưng trên hết là trong một thời gian ngắn hơn rất nhiều so với các phương pháp gia nhiệt thông thường. Các thông số công nghệ của q trình SPS bao gồm: nhiệt độ, dịng điện, điện áp giữa các điện cực máy, áp lực cơ học và hành trình dịch chuyển của chày ép. Các thơng số này có thể được theo dõi và ghi lại trong thời gian thực. Mật độ khối của vật liệu đạt được bằng SPS rất cao trong thời gian rất ngắn. Khả năng này, cùng với nhiệt độ thiêu kết thấp hơn thông thường dẫn đến hiệu quả làm cho cấu trúc sản phẩm mịn hơn. Đặc biệt, đối với vật liệu bột có kích thước nano có thể được thiêu kết mà kích thước hạt không bị tăng đáng kể, điều này không thể đạt được trong q trình thiêu kết thơng thường. Do đó, SPS có thể sử dụng để chế tạo vật liệu khối có cấu trúc nano hoặc vật liệu nano composit. Ngồi ra, để tận dụng tốc độ gia nhiệt cao và thời gian giữ nhiệt ngắn hơn, SPS có thể hạn chế đáng kể các phản ứng khơng mong muốn có thể xảy ra trong q trình thiêu kết thơng

thường, do đó có thể tránh được sự hình thành các pha sản phẩm khơng mong muốn. Tuy nhiên, hiện tượng duy nhất được chứng minh bằng thực nghiệm được điều khiển bởi dịng điện chạy qua pít-tơng – khn ép - mẫu là hiệu ứng Joule. Các hiện tượng khác như sự hình thành plasma, nhiệt độ cục bộ cao tại khu vực tiếp xúc giữa các hạt, tăng cường khuếch tán vật liệu khi hình thành khu vực tiếp xúc, cũng có thể diễn ra đồng thời. Tuy nhiên, chúng chưa được chứng minh một cách rõ ràng, do các hiệu ứng này khá nhỏ so với hiệu ứng Joule chiếm ưu thế [105].

Các mẫu trong luận án được chế tạo trên hệ SPS Dr. Sinter 515S Syntex (hình 2.22) đặt tại PTN Hóa luyện kim đất hiếm, Viện Hóa học và Khoa học Vật liệu Đơng Paris, CNRS, CH Pháp.

Hình 2.22. Hệ thiêu kết xung điện Plasma Dr. Sinter 515S Syntex

Kết luận chương 2

Các hệ mẫu nghiên cứu được chế tạo bằng các phương pháp nghiền cơ năng lượng cao kết hợp với ủ nhiệt. Các quá trình thực nghiệm và các phép đo nghiên cứu cấu trúc, các tính chất điện-từ của các mẫu đã được tiến hành trên các thiết bị thí nghiệm tại Phịng Vật lý Các Vật liệu Từ và Siêu dẫn, Phịng thí nghiệm trọng điểm Quốc gia về Thiết bị và Linh kiện điện tử thuộc Viện Khoa học Vật liệu; PTN Hóa luyện kim đất hiếm, Viện Hóa học và Khoa học Vật liệu Đông Paris, CNRS, CH Pháp; PTN BL8 thiết bị bức xạ gia tốc hạt nhân SIAM Photon, Nakhon Ratchasima, Thái Lan. Đây là những thiết bị tự xây dựng và thiết bị thương mại có độ tin cậy cao.

Chương 3

Một phần của tài liệu NGHIÊN CỨU CHẾ TẠO VÀ TÍNH CHẤT TỪ CỦA HỆ HẠT NANO TỪ Fe, Co BẰNG PHƯƠNG PHÁP NGHIỀN CƠ NĂNG LƯỢNG CAO (Trang 78 - 81)

Tải bản đầy đủ (DOC)

(170 trang)
w