Skkn hóa học thpt bài toán nhiệt hóa học – cân bằng hóa học

24 5 0
Skkn hóa học thpt bài toán nhiệt hóa học – cân bằng hóa học

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

A SÁNG KIẾN KINH NGHIỆM ĐỀ TÀI "BÀI TOÁN NHIỆT HÓA HỌC – CÂN BẰNG HÓA HỌC" 1 skkn A ĐẶT VẤN ĐỀ I LỜI MỞ ĐẦU Trong quá trình giảng dạy cho học sinh nhiệm vụ đặt ra cho giáo viên là làm sao có thể phát[.]

SÁNG KIẾN KINH NGHIỆM ĐỀ TÀI: "BÀI TỐN NHIỆT HĨA HỌC – CÂN BẰNG HÓA HỌC" skkn A ĐẶT VẤN ĐỀ I LỜI MỞ ĐẦU: Trong trình giảng dạy cho học sinh nhiệm vụ đặt cho giáo viên phát triển tư cho học sinh, giúp học sinh phát triển tư cách tốt đặc biệt mơn hóa học ( mơn học nghiên cứu sáng tạo) Việc vận dụng kiến thức lý thuyết vào tập trình tốt để học sinh phát triển tư cho học sinh Vậy để học sinh có kỹ tự học, tự sáng tạo học sinh giáo viên phải cung cấp cho học sinh kiến thức phương pháp tập phù hợp với mức độ yêu cầu kỳ thi Trong trình giảng dạy đặc biệt dạy đối tượng học sinh giỏi chuẩn bị cho kỳ thi học sinh giỏi cấp, thấy có số chuyên đề cần phải đào sâu kiến thức học sinh khơng có tài liệu việc tự học sinh nghiên cứu hay tự hệ thống cho kiến thức khó.Vì thực tế yêu cầu cần thiết người giáo viên bổ sung kiến thức thêm cho học sinh hệ thống kiến thức hệ thống dạng tập cho học sinh Với ý định đó, sáng kiến kinh nghiệm (SKKN) muốn đưa hệ thống lý thuyết số dạng tập thuộc chương trình ơn thi học sinh giỏi cấp tốn nhiệt hóa học- cân hóa học Dĩ nhiên phương pháp kết hợp lý thuyết mà học sinh tiếp thu q trình học tập phổ thơng II THỰC TRẠNG VẤN ĐỀ NGHIÊN CỨU: * Thực trạng : Trong kỳ thi, đặc biệt kỳ thi quan trọng học sinh phổ thông đặc biệt kỳ thi học sinh giỏi cấp tỉnh trở lên Vấn đề đặt gặp tốn dạng khơng có nhiều chương trình ( Bài tốn nhiệt động cân hóa học) học sinh gặp nhiều khó khăn thường khơng làm Vì trình giảng dạy giáo viên phải rèn luyện nghiên cứu giảng dạy thêm cho học sinh kiến thức phương pháp giải tập liên quan cho học sinh đặc biệt kiến thức nâng cao nhằm phục vụ cho kỳ thi quan trọng * Kết quả, hiệu quả: Với thực trạng nêu với học sinh có kỹ tốt suy luận để đưa cách giải hợp lý khơng khơng giải Từ ta thấy việc học sinh tự tìm hiểu kiến skkn thức tìm phương pháp giải tập học sinh nhiều hạn chế chưa phù hợp với mức độ kỳ thi Trước tình hình học sinh tơi thấy cần thiết phải hình thành cho học sinh thói quen gặp vấn đề mà chương trình phổ thơng cịn hạn chế giáo viên phải người đưa tình nhằm thúc khả tự học kiến thức đưa phương pháp phù hợp Do q trình giảng dạy tơi có đưa phương pháp giải nhanh tốn hóa học : Bài tốn nhiệt hóa học – cân hóa học Trong sáng kiến kinh nghiệm muốn đưa phần kiến thức số tập phù hợp với số kỳ thi Nội dung thiết lập sử dụng có hiệu quả, hình thành phát triển mở rộng thông qua nội dung kiến thức, tích lũy thành kiến thức cho học sinh chuyên đề skkn B CÁC BIỆN PHÁP THỰC HIỆN: - Giáo viên tiến hành phần riêng cho học sinh: * PHẦN 1: HƯỚNG DẪN LÝ THUYẾT CƠ BẢN CHO HỌC SINH: I Phần 1: Cung cáp lý thuyết cho học sinh nhiệt phản ứng cân hóa học A Một số khái niệm sở nhiệt động học I Hệ: Khái niệm: * Hệ tập hợp đối tượng nghiên cứu giới hạn khu vực không gian xác định * Hệ mở hệ trao đổi chất lượng với mơi trường ngồi * Hệ kín hệ trao đổi lượng mà không trao đổi chất với mơi trường ngồi * Hệ lập hệ không trao đổi chất lượng với môi trường * Hệ đồng thể hệ mà khơng có phân chia thành khu vực khác với tính chất khác Hệ đồng thể cấu tạo pha * Hệ dị thể hệ tạo thành nhiều pha khác Các đại lượng đặc trưng cho tính chất hệ: * Các đại lượng dung độ (khuếch độ) đại lượng phụ thuộc vào lượng chất khối lượng, thể tích …Các đại lượng có tính chất cộng * Các đại lượng cường độ đại lượng không phụ thuộc vào lượng chất nhiệt độ, áp suất, khối lượng riêng… B Hiệu ứng nhiệt phản ứng I Khái niệm: Hiệu ứng nhiệt phản ứng hoá học lượng nhiệt toả hay hấp thụ phản ứng II Một vài tên gọi hiệu ứng nhiệt: Nhiệt tạo thành (sinh nhiệt), nhiệt phân huỷ: skkn  Nhiệt tạo thành tiêu chuẩn Ho chất hiệu ứng nhiệt phản ứng tạo thành mol chất từ đơn chất trạng thái bền vững điều kiện tiêu chuẩn * Chú ý: Nhiệt tạo thành tiêu chuẩn Ho đơn chất trạng thái bền vững điều kiện tiêu chuẩn không  Nhiệt phân huỷ chất hiệu ứng nhiệt phản ứng phân huỷ mol chất thành đơn chất trạng thái bền vững điều kiện tiêu chuẩn Như vậy, nhiệt tạo thành nhiệt phân huỷ chất có giá trị trái dấu Nhiệt cháy (thiêu nhiệt) chất: hiệu ứng nhiệt phản ứng đốt cháy mol chất O2 để tạo thành sản phẩm dạng bền vững điều kiện tiêu chuẩn Nhiệt hoà tan chất: hiệu ứng nhiệt q trình hồ tan mol chất III Định luật Hess “Hiệu ứng nhiệt phản ứng hoá học phụ thuộc vào trạng thái đầu chất phản ứng trạng thái cuối sản phẩm phản ứng, không phụ thuộc vào giai đoạn trung gian, nghĩa không phụ thuộc vào đường từ trạng thái đầu tới trạng thái cuối” IV Phương pháp xác định hiệu ứng nhiệt phản ứng Phương pháp thực nghiệm: Trong phịng thí nghiệm hố học, người ta xác định hiệu ứng nhiệt phản ứng hoá học cách dùng dụng cụ gọi nhiệt lượng kế Nhiệt lượng kế bố trí cho khơng có trao đổi nhiệt với mơi trường xung quanh Nó gồm thùng lớn đựng nước, nhúng ngập bom nhiệt lượng kế, nơi thực phản ứng hố học Trong thùng cịn đặt nhiệt kế để đo thay đổi nhiệt độ nước que khuấy để để trì cân nhiệt hệ Phản ứng thực bom nhiệt lượng kế Nhiệt lượng giải phóng (phương pháp thường dùng cho phản ứng toả nhiệt) nước hấp thụ làm tăng nhiệt độ nhiệt lượng kế từ T đến T2 Ta xác định nhiệt lượng toả Q sau: Q = C(T2 – T1) (1) (C: nhiệt dung nhiệt lượng kế (J/K)) Từ đó, xác định hiệu ứng nhiệt phản ứng skkn Phương pháp xác định gián tiếp Dựa vào định luật Hess, ta xác định gián tiếp hiệu ứng nhiệt trình cho cách sau: (1) Dựa vào chu trình nhiệt hố học (2) Cộng đại số q trình (3) Dựa vào sinh nhiệt chất: Hiệu ứng nhiệt phản ứng tổng sinh nhiệt chất sản phẩm trừ tổng sinh nhiệt chất tham gia (có nhân với hệ số tỉ lượng tương ứng) (4) Dựa vào thiêu nhiệt chất: Hiệu ứng nhiệt phản ứng tổng thiêu nhiệt chất tham gia trừ tổng thiêu nhiệt chất sản phẩm (có nhân với hệ số tỉ lượng tương ứng) (5) Dựa vào lượng phân ly liên kết Hiệu ứng nhiệt phản ứng tổng lượng phân ly liên kết tất liên kết chất tham gia trừ tổng lượng phân ly liên kết tất liên kết chất sản phẩm (có nhân với hệ số tỉ lượng tương ứng) B Nguyên lý I nhiệt động học I Nội dung Nội dung nguyên lý I nhiệt động học bảo toàn lượng: “Năng lượng sinh tự biến mà chuyển từ dạng sang dạng khác” II Nội U entanpi H * Nội hệ tổng lượng tồn bên hệ, bao gồm: lượng hạt nhân, lượng chuyển động electron nguyên tử, lượng liên kết, lượng dao động nguyên tử, lượng chuyển động phân tử … * Ta xác định giá trị tuyệt đối nội U hệ mà xác định biến thiên nội hệ chuyển từ trạng thái sang trạng thái khác Giả sử trạng thái đầu 1, hệ nhận nhiệt lượng Q, sinh công W chuyển thành trạng thái biến thiên nội hệ là: U = Q + W (Qui ước hệ nhận nhiệt Q > hệ sinh cơng W < 0) * Nếu phản ứng xảy bình kín, dung tích khơng đổi (q trình đẳng tích) W = 0, đó: QV = U skkn * Nhưng nhiều phản ứng thực áp suất khơng đổi áp suất khí (q trình đẳng áp), đó: W = - P.V U = QP – P.V QP = U + P.V QP = (U2- U1) + P(V2 – V1) QP = (U2 + PV2) – (U1 + PV1) Người ta gọi (U + PV) entanpi, ký hiệu H Do đó : QP = H2 – H1 = H Khi áp suất không đổi, lượng nhiệt QP biến thiên entanpi H III Quan hệ QP QV Ta có: QP = U + P.V QP = U + P.(V2 – V1) QP = U + (n2RT – n1RT) QP = QV + nRT (2) n: Độ biến thiên số mol khí * Chú ý: So với thể tích mol chất khí, thể tích mol chất rắn lỏng nhỏ, khơng đáng kể Do đó, biến thiên thể tích chất rắn lỏng phản ứng hố học coi khơng Vì vậy, xét công học ta ý đến biến thiên thể tích chất khí IV Sự phụ thuộc hiệu ứng nhiệt vào nhiệt độ Định luật Kirchoff (3) HT = HT + đó: skkn HT : Hiệu ứng nhiệt phản ứng Ti K CP: Biến thiên nhiệt dung đẳng áp chất phản ứng Nếu nhiệt dung chất khơng phụ thuộc vào nhiệt độ CP = Const, đó: HT = HT + CP(T2 – T1) (4) C Nguyên lý II nhiệt động học I Khái niệm entropi * Về ý nghĩa vật lý, entropi đại lượng đặc trưng cho mức độ hỗn độn phân tử hệ cần xét Mức độ hỗn độn hệ cao entropi hệ có giá trị lớn * Đối với trình thay đổi trạng thái vật lý chất nhiệt độ khơng thay đổi áp suất không thay đổi biến thiên entropi trình là: S = (5) * Đối với phản ứng hoá học, biến thiên entropi là: S = (sản phẩm) - (chất phản ứng) (6) * Chú ý: Entropi tiêu chuẩn đơn chất bền điều kiện tiêu chuẩn không II Nội dung nguyên lý II nhiệt động học “Trong trình tự diễn biến nào, tổng biến thiên entropi hệ môi trường xung quanh phải tăng” III Năng lượng tự Gibbs * Các trình hố, lý thường xảy hệ kín, tức có trao đổi nhiệt cơng với mơi trường xung quanh, đó, dùng biến thiên entropi để đánh giá chiều skkn hướng trình phức tạp phải quan tâm đến mơi trường xung quanh Vì vậy, người ta kết hợp hiệu ứng lượng hiệu ứng entropi hệ để tìm điều kiện xác định chiều diễn biến trình tự phát Năm 1875, nhà vật lý người Mỹ đưa đại lượng lượng tự Gibbs định nghĩa: G = H – TS * Đối với trình đẳng nhiệt, đẳng áp thì: G = H –T.S (7) Trong hệ thức này, G, H S liên quan đến hệ cần xét G gọi biến thiên đẳng nhiệt, đẳng áp (thường nói gọn biến thiên đẳng áp entanpi tự lượng tự Gibbs) tiêu chuẩn để đánh giá q trình có xảy hay khơng? Nếu G < trình tự xảy Nếu G = hệ trạng thái cân Nếu G > q trình khơng xảy (nhưng q trình ngược lại tự xảy ra) IV Biến thiên đẳng áp phản ứng hoá học Thế đẳng áp hình thành tiêu chuẩn chất (Go) * Thế đẳng áp hình thành tiêu chuẩn chất biến thiên đẳng áp trình hình thành mol chất từ đơn chất trạng thái bền vững điều kiện tiêu chuẩn * Chú ý: Go đơn chất trạng thái bền vững điều kiện tiêu chuẩn khơng (Go chất có tài liệu tra cứu) Biến thiên đẳng áp phản ứng hoá học G = (sản phẩm) ứng) (chất phản (8) G = H – T.S (9) * Chú ý:  Người ta qui ước nhiệt độ, Ho(H+.aq) = Go(H+.aq) = 0, nghĩa phản ứng: skkn 1/2H2(k) - 1e + H2O  H+(aq) có Ho = Go = Từ xác định Ho Go ion khác dung dịch  Người ta thống qui ước S o(H+.aq) = nhiệt độ từ lập bảng So cho ion khác dung dịch D Cân hoá học I Hằng số cân Xét phản ứng thuận nghịch: aA + bB cC + dD Người ta thiết lập biến thiên đẳng nhiệt, đẳng áp phản ứng là: G = Go + RTln (10) đó: Go: Biến thiên dẳng nhiệt, đẳng áp phản ứng ai: Hoạt độ cấu tử i - Nếu i chất khí = Pi / Po (Po áp suất tiêu chuẩn atm) - Nếu i chất tan dung dịch = Ci / Co (Co nồng độ tiêu chuẩn 1M) - Nếu i dung môi chất rắn = Khi phản ứng đạt đến trạng thái cân G = 0, đó: Go = - RTln (11) (CB cấu tử trạng thái cân bằng) Đối với phản ứng định, nhiệt độ xác định, Go số nên từ (11) suy đại lượng sau dấu ln số, đại lượng gọi số cân nhiệt động, ký hiệu Ka Ka = (12) (Khi không sợ nhầm lẫn khơng cần ghi ký hiệu CB chân) Đặt Q = (13) (Q gọi hàm hoạt độ hay thương số phản ứng) 10 skkn Từ (10) đến (13) suy ra: G = RTln (14) Do đó: * Nếu Q < Ka, phản ứng xảy theo chiều thuận * Nếu Q > Ka, phản ứng xảy theo chiều nghịch * Nếu Q = Ka, phản ứng trạng thái cân II Các biểu thức tính số cân Hằng số cân theo áp suất (Kp) Xét phản ứng thuận nghịch xảy pha khí: aA(k) + bB(k) cC(k) + dD(k) Kp = (15) (Pi: Giá trị áp suất riêng phần cấu tử i TTCB tính theo atm) Pi = xi.P = niRT/V Hằng số cân theo nồng độ mol (KC) Xét phản ứng đồng thể (xảy dung dịch hay pha khí): aA + bB cC + dD KC = (16) ([i]: Giá trị nồng độ mol cấu tử i TTCB) * Chú ý: Đối với phản ứng xảy pha khí thì: KP = KC.(RT)n (17) (n = (c + d) – (a + b); R = 0,082) Đại lượng Kx Xét phản ứng đồng thể: aA + bB cC + dD 11 skkn Kx = (18) (xi = ) Đối với phản ứng xảy pha khí thì: KP = Kx.(P)n (19) (P: Ấp suất chung hệ) KP phụ thuộc vào nhiệt độ nên từ (19) cho thấy K x phụ thuộc vào nhiệt độ mà phụ thuộc vào áp suất chung hệ Chỉ trường hợp n = 0, Kx = Kp, Kx khơng phụ thuộc vào áp suất chung hệ * Chú ý: Khi n = thì: KP = KC = Kx Hằng số cân phản ứng oxi hoá khử: Xét bán phản ứng: aOx + ne bKh Ta có: Go = -RTlnK = -nFEo  nEo lgK = Ở 25oC (298K) = , đó: lgK = K = 10 nE /0,059 (20) Xét phản ứng oxi hoá - khử gồm hai bán phản ứng sau: aOx1 + ne bKh1 K1 = 10 nE cKh2 - me dOx2 K2 = 10 – mE maOx1 + ncKh2 mbKh1 + ndOx2 /0,059 Xm /0,059 Xn K = 10 mn(E o -E )/0,059 III Sự phụ thuộc số cân vào nhiệt độ 12 skkn Ta có: Go = Ho – T.So = - RTlnK  lnK = - + Gọi K1, K2 số cân phản ứng T1K T2K Giả sử Ho So phản ứng không phụ thuộc vào nhiệt độ thì: lnK1 = lnK2 =  ln + + = (21) (Công thức Van’t Hoff) IV Sự chuyển dịch cân Khái niệm chuyển dịch cân Cân hoá học cân động, đặc trưng giá trị hồn tồn xác định thơng số nhiệt độ, nồng độ, áp suất cấu tử hệ Nếu người ta thay đổi nhiều thơng số trạng thái hệ bị thay đổi, cân hoá học hệ bị phá vỡ Sau thời gian, hệ chuyển đến trạng thái cân Hiện tượng gọi chuyển dịch cân Ảnh hưởng thay đổi nồng độ chất Xét phản ứng đồng thể trạng thái cân bằng: aA + bB cC + dD * Nếu tăng nồng độ chất phản ứng A, B giảm nồng độ chất tạo thành C, D Q < K nên cân chuyển dịch theo chiều thuận * Nếu giảm nồng độ chất phản ứng A, B tăng nồng độ chất tạo thành C, D Q > K nên cân chuyển dịch theo chiều nghịch Kết luận: Cân chuyển dich theo chiều chống lại thay đổi nồng độ chất Ảnh hưởng thay đổi áp suất (nhiệt độ không thay đổi) 13 skkn Ở ta xét thay đổi áp suất chung hệ đến chuyển dịch cân Ảnh hưởng thay đổi áp suất riêng cấu tử giống ảnh hưởng thay đổi nồng độ Xét phản ứng thuận nghịch xảy pha khí: aA(k) + bB(k) cC(k) + dD(k) Ta có: Kx = Kp(P)-n (P: Áp suất chung hệ trạng thái cân bằng) * n > 0: Vì KP số nhiệt độ xác định nên P tăng K x giảm, suy cân chuyển dịch theo chiều nghịch chiều có số phân tử khí * n < 0: Khi P tăng Kx tăng, suy cân chuyển dịch theo chiều thuận chiều có số phân tử khí Kết luận: Khi tăng áp suất hệ trạng thái cân bằng, cân chuyển dịch phía có số phân tử khí ngược lại * n = 0: Khi đó, Kx = Kp, Kx không phụ thuộc vào áp suất chung hệ trạng thái cân nên thay đổi áp suất không làm chuyển dịch cân Ảnh hưởng thay đổi nhiệt độ Ta có: Go = Ho – T.So = - RTlnK  lnK = - + Ho, So thường phụ thuộc vào nhiệt độ nên: * Ho < (Phản ứng toả nhiệt): Khi T tăng lnK giảm, tức K giảm, suy cân chuyển dịch theo chiều nghịch, tức chiều thu nhiệt * Ho > (Phản ứng thu nhiệt) Khi T tăng lnK tăng, tức K tăng, suy cân chuyển dịch theo chiều thuận, tức chiều thu nhiệt 14 skkn Kết luận: Khi tăng nhiệt độ, cân chuyển dịch theo chiều thu nhiệt ngược lại Nguyên lý chuyển dịch cân Le Chatelier Một phản ứng trạng thái cân tác động yếu tố bên ( Nồng độ, nhiệt độ, áp suất) cân chuyển dịch theo chiều chống lại tác động PHẦN 2: HƯỚNG DẪN HỌC SINH MỘT SỐ BÀI TẬP ÁP DỤNG: * Một số tập nhiệt hóa học: Ví dụ 1: cđa Cl-(aq) Biết: Tính (a): H2 + Cl2(k) (b): HCl(k) + aq (c): H2 + aq HCl(k) = -92,2(kJ) H+(aq) + Cl-(aq) = -75,13(kJ) H+(aq) + e =0 Lời giải: Lấy: (a) + (b) – (c) ta : Cl2 + e + aq = Cl-(aq) = - 167,33(kJ) Ví dụ 2: Tính hiệu ứng nhiệt phản ứng : 3Fe(NO3)2(aq) + 4HNO3(aq) 3Fe(NO3)3(aq) + NO(k) + 2H2O (l) Diễn nước 250 C Cho biết: Fe2+(aq) (kJ/mol) -87,86 Fe3+(aq) - 47,7 NO3-(aq) -206,57 NO(k) H2O(l) 90,25 -285,6 Lời giải: Phương trình ion phản ứng : 3Fe2+(aq) + 4H+(aq) + NO3-(aq) 3Fe3+(aq) + NO(k) + 2H2O (l) 15 skkn (Fe3+,aq)+ H=3 (NO3-, aq) (NO)+2 (H2O(l))-3 (Fe2+,aq)- = 3.(-47,7) + 90,25 + 2.(-285,6) + 3.87,6 + 206,57 = -153,9(kJ) Ví dụ 3: Tính Ho phản ứng sau: 1) Fe2O3(r) + 2Al(r) 2Fe(r) + Al2O3(r) ( 1) Cho biết = -822,2 kJ/mol; 2) S(r) + O2(k) SO3(k) Biết: (3) : S(r) + O2(k) = -1676 (kJ/mol) (2) SO2(k) (4): 2SO2(k) + O2(k) = -296,6 kJ 2SO3(k) = -195,96 kJ Từ kết thu khả diễn biến thực tế phản ứng rút kết luận gì? Lời giải: 1) = 2) = - = -1676 + 822,2 = - 853,8(kJ) + = -296,6 - 195,96 = -394,58 (kJ) KL: Hai phản ứng (1) , (2) tỏa nhiệt mạnh Song thực tế phản ứng không tự xảy Như dựa vào H không đủ để xác định chiều hướng q trình hóa học Ví dụ 4: Tính hiệu ứng nhiệt đẳng tích tiêu chuẩn phản ứng sau 250C a) Fe2O3(r) + 3CO(k) b) Cthan ch× + O2(k) c) Zn(r) + S(r) d) 2SO2(k) + O2(k) 2Fe(r) + 3CO2(k) = 28,17 (kJ) CO2 (k) = -393,1(kJ) ZnS(r) = -202,9(kJ) 2SO3(k) = -195,96 (kJ) Lời giải: 16 skkn Ta có biểu thức H= U+ n.RT Do phản ứng a), b), c) có Phản ứng d): Uo = Ho - n = nên Uo = Ho n.RT = -195,96+1.8,314 298,15 10-3 = -193,5 (kJ) * Một số tập cân hóa học: Ví dụ : Cho (mol) PCl5 vào bình chân khơng thể tích V đưa lên nhiệt độ 525 0K : PCl5(k) PCl3(k) + Cl2(k) (1) Được thiết lập với Kp = 1,86 áp suất hệ atm a Tính số mol chất cân b Cho mol PCl5 mol He vào bình kín 5250K Tính số mol chất cân cho nhận xét? Lời giải: PCl5(k) PCl3(k) + Cl2(k) (1) Ban đầu mol Phản ứng: x mol x mol x mol Cân 1-x mol x mol x mol Vậy nhh sau phản ứng = (1-x) + x + x = 1+x (mol) Ta có PPCl = ; pPCl = Áp dụng biểu thức : Kp = PCl = Ta có = 1,86 Giải phương trình ta có x = 0,694(mol) Vậy cân số mol PCl 5(k) ;PCl3(k) Cl2(k) là: 0,306 ; 0,694 0,694 mol b, Tại cân câu a ta có nhh sau = 1+ x nên V(bình) = = 36,44 (lít) theo câu b, có thêm mol He nhh sau = 2+x 17 skkn Phệ = Tương tự tính PPCl ; PPCl PCl cân bằng, thay vào Kp hệ ta có biểu thức: = 1,85 Giải phương trình ta x = 0,692 mol( t/mãn) Vậy cân số mol PCl5(k) ;PCl3(k) Cl2 0,308; 0,692 0,692 mol KL: Bài toán với nguyên lý chuyển dịch cân hóa học Ví dụ 2: Có cân : CO(K) + H2O(Hơi) H2(K) + CO2(K) (1) Cho vào bình phản ứng (mol) H2O mol CO 4600C thấy có 95%CO phản ứng a Tính Kp cân 4600C b Cho phản ứng nhiệt độ – 41,0 (KJ/mol) Tìm nhiệt độ mà có 99% CO bị phản ứng? Lời giải: a CO(K) + H2O(Hơi) H2(K) + CO2(K) (1) ban đầu mol mol 0 Phản ứng: 0,95 0,95 0,95 0,95 mol Cân 0,05 5,05 0,95 0,95 mol Ta có Kp = = Do =0 Thế giá trị vào ta có : Kp = 3,574 b Ta có nhiệt độ 4600C có Kp1 = 3,574 Tương tự t20C ta có với 99% CO bị phản ứng : Kp2 = Áp dụng biểu thức (21) ta có :ln = 19,56 = 18 skkn Với K2 = 19,56 t20C K1 = 3,574 4600C ta có ln = ( - Giải phương trình ta thu t2 = 5850C Ví dụ 3(Đề thi casio khu vực năm 2011-2012): Cho cân : N2(k) + 3H2(k) 2NH3(k) H = -92KJ/mol Nếu xuất phát từ hỗn hợp ban đầu N2 H2 theo tỉ lệ mol 1: đạt đến trạng thái cân 4500C 300atm, NH3 chiếm 36% thể tích hỗn hợp a Tính số Kp cân trên? b Tiến hành nhiệt độ 450 0C, cần phải tiến hành áp suất để đạt cân NH3 chiếm 50% thể tích hỗn hợp? c Giữ áp suất khơng đổi 300atm cần phải tiến hành nhiệt độ để cân NH3 chiếm 50% thể tích hỗn hợp? Lời giải: a Giả sử số mol sau phản ứng mol Vậy số mol NH 3, N2 H2 : 0,36 ; 0,48 0,16 mol tương ứng với x3 , x2 , x1 (mol) Thay vào biểu thức Kp = = 8,138.10-5 = b Theo điều kiện cân NH chiếm 50% thể tích (hay số mol) hỗn hợp : Vậy số mol NH3, N2 H2 : x3 = 0,50 ; x1 = 0,125 x2 = 0,375 - Vì nhiệt độ khơng đổi nên Kp không đổi, thay vào biểu thức Kp ta có: Kp = = 8,138.10-5 Giải phương trình ta thu p = 680atm c Áp dụng biểu thức tương tự câu b ví dụ ta có t = 3800C * Một số tập đề thi: 19 skkn Bài tập 1:( Đề thi casio khu vực 2008): Tại 4000C, P = 10atm phản ứng: N2(k) + 3H2(k) 2NH3 (k) có Kp = 1,64 104 Tìm % thể tích NH3 trạng thái cân bằng, giả thiết lúc đầu N 2(k) H2(k) có tỉ lệ số mol theo hệ số phương trình Bài tập 2:(Đề thi casio khu vực 2008): Nitrosyl clorua chất độc, đun nóng phân huỷ thành nitơ monoxit clo a) Hãy viết phương trình cho phản ứng b) Tính Kp phản ứng 298K(theo atm theo Pa) H S (kJ/mol) (J/K.mol) Nitrosyl clorua Nitơ monoxit Cl2 51,71 90,25 ? 264 211 223 c) Tính gần Kp phản ứng 475K Bài tập 3:(Đề thi casio khu vực 2008 dự bị): Cho số liệu nhiệt động số phản ứng sau 298K Số phản ứng Phản ứng Ho298 (kJ) (1) 2NH3 + 3N2O  4N2 + 3H2O  1011 (2) N 2O + 3H2  N2H4 +  317 H2O (3) (4) 2NH3 + 0,5O2  N2H4 + H2O H2 + 0,5 O2  H2O  143  286 S0298 (N2H4) = 240 J/K.mol ; S0298 (H2O) = 66,6 J/K.mol S0298 (N2) = 191 J/K.mol ; S0298 (O2) = 205 J/K.mol 20 skkn ... người đưa tình nhằm thúc khả tự học kiến thức đưa phương pháp phù hợp Do trình giảng dạy tơi có đưa phương pháp giải nhanh tốn hóa học : Bài tốn nhiệt hóa học – cân hóa học Trong sáng kiến kinh nghiệm... kỳ thi quan trọng học sinh phổ thông đặc biệt kỳ thi học sinh giỏi cấp tỉnh trở lên Vấn đề đặt gặp toán dạng khơng có nhiều chương trình ( Bài tốn nhiệt động cân hóa học) học sinh gặp nhiều... thuộc chương trình ơn thi học sinh giỏi cấp tốn nhiệt hóa học- cân hóa học Dĩ nhiên phương pháp kết hợp lý thuyết mà học sinh tiếp thu trình học tập phổ thông II THỰC TRẠNG VẤN ĐỀ NGHIÊN CỨU:

Ngày đăng: 19/02/2023, 15:31

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan