6. Kết cấu của luận văn
3.3.3. Phương pháp phân tích số liệu
3.3.3.1. Phương pháp phân tích độ tin cậy của thang đo
Những mục hỏi đo lường cùng một khái niệm tiềm ẩn thì phải có mối liên quan với những cái còn lại trong nhóm đó. Hệ số của Cronbach là một phép kiểm định thống kê về mức độ chặt chẽ mà các mục hỏi trong thang đo tương quan với nhau.
Công thức của hệ số Cronbach Alpha là: = N/[1 + (N – 1)]
Trong đó: là hệ số tương quan trung bình giữa các mục hỏi.
Phương pháp này cho phép người phân tích loại bỏ các biến không phù hợp và hạn chế các biến rác trong quá trình nghiên cứu và đánh giá độ tin cậy của thang đo bằng hệ số thông qua hệ số Cronbach alpha. Những biến có hệ số tương quan biến tổng (itemtotal correlation) nhỏ hơn 0.3 sẽ bị loại. Thang đo có hệ số Cronbach alpha từ 0.6 trở lên là có thể sử dụng được trong trường hợp khái niệm đang nghiên cứu mới (Nunnally, 1978; Peterson, 1994; Slater, 1995). Thông thường, thang đo có Cronbach alpha từ 0.7 đến 0.8 là sử dụng được. Nhiều nhà nghiên cứu cho rằng khi thang đo có độ tin cậy từ 0.8 trở lên đến gần 1 là thang đo lường tốt.
3.3.3.2. Phương pháp thống kê mô tả
Thống kê mô tả được sử dụng để mô tả những đặc tính cơ bản của dữ liệu thu thập được từ nghiên cứu thực nghiệm qua các cách thức khác nhau. Thống kê mô tả cung cấp những tóm tắt đơn giản về mẫu và các thước đo. Cùng với phân tích đồ họa đơn giản, chúng tạo ra nền tảng của mọi phân tích định lượng về số liệu. Bước đầu tiên để mô tả và tìm hiểu về đặc tính phân phối của một bảng số liệu thô là lập bảng phân phối tần số. Sau đó, sử dụng một số hàm để làm rõ đặc tính của mẫu phân tích. Để hiểu được các hiện tượng và ra quyết định đúng đắn, cần nắm được các phương pháp cơ bản của mô tả dữ liệu. Có rất nhiều kỹ thuật hay được sử dụng, có thể phân loại các kỹ thuật này như sau:
Biểu diễn dữ liệu bằng đồ họa trong đó các đồ thị mô tả dữ liệu hoặc giúp so sánh dữ liệu;
Biểu diễn dữ liệu thành các bảng số liệu tóm tắt về dữ liệu;
Thống kê tóm tắt (dưới dạng các giá trị thống kê đơn nhất) mô tả dữ liệu.
3.3.3.3. Phương pháp phân tích nhân tố khám phá EFA
Phân tích nhân tố khám phá là kỹ thuật được sử dụng nhằm thu nhỏ và tóm tắt các dữ liệu sau khi đã đánh giá độ tin cậy của thang đo bằng hệ số Cronbach alpha và loại đi các biến không đảm bảo độ tin cậy. Trong nghiên cứu, chúng ta có thể thu thập được một số lượng biến khá lớn và hầu hết các biến này có liên hệ với nhau và số lượng của chúng phải được giảm bớt xuống đến một số lượng mà chúng ta có thể sử dụng được. Liên hệ giữa các nhóm biến có liên hệ qua lại lẫn nhau được xem xét và trình bày dưới dạng một số ít các nhân tố cơ bản. Vì vậy, phương pháp này rất có ích
cho việc xác định các tập hợp biến cần thiết cho vấn đề nghiên cứu và được sử dụng để tìm mối quan hệ giữa các biến với nhau.
3.3.3.4. Phân tích hồi quy
a. Định nghĩa
Phân tích hồi quy là nghiên cứu sự phụ thuộc của một biến (biến phụ thuộc hay biến được giải thích) vào một hay nhiều biến khác (biến độc lập hay biến giải thích) với ý tưởng cơ bản là ước lượng hay dự đoán giá trị trung bình của biến phụ thuộc trên cơ sở đã biết của biến độc lập.
b. Các giả định khi xây dựng mô hình hồi quy Mô hình hồi quy có dạng:
Yi = B0+ B1 X1i+ B2 X2i+…+ Bn Xni + ei
Các giả định quan trọng khi phân tích hồi quy tuyến tính
Giả thiết 1: Giả định liên hệ tuyến tính.
Giả thiết 2: Phương sai có điều kiện không đổi của các phần dư. Giả thiết 3: Không có sự tương quan giữa các phần dư.
Giả thiết 4: Không xảy ra hiện tượng đa cộng tuyến. Giả thiết 5: Giả thiết về phân phối chuẩn của phần dư.
Tóm tắt chương 3:
Trong chương này, tác giả tập trung giới thiệu quy trình nghiên cứu và phương pháp thực hiện các bước nghiên cứu; các thành phần và biến quan sát được sử dụng nghiên cứu các nhân tố ảnh hưởng đến sự hài lòng và lòng trung thành của khách hàng đối với thẻ ATM của Ngân hàng TMCP Đầu Tư và Phát Triển Việt Nam CN Khánh Hòa.
CHƯƠNG 4: KẾT QUẢ VÀ THẢO LUẬN