Phân tích hồi quy

Một phần của tài liệu đánh giá mức độ hài lòng của doanh nghiệp đối với dịch vụ hải quan một cửa asean tại chi cục hải quan cửa khẩu quốc tế lao bảo tỉnh quảng trị (Trang 56 - 59)

a. Định nghĩa

Phân tích hồi quy là nghiên cứu sự phụ thuộc của một biến (biến phụ thuộc hay biến được giải thích) vào một hay nhiều biến khác (biến độc lập hay biến giải thích) với ý tưởng cơ bản là ước lượng hay dự đoán giá trị trung bình của biến phụ thuộc trên

cơ sở đã biết của biến độc lập.

b. Các giả định khi xây dựng mô hình hồi quy Mô hình hồi quy có dạng:

Yi = B0+ B1 X1i+ B2 X2i+…+ Bn Xni + ei

Các giả định quan trọng khi phân tích hồi quy tuyến tính

- Giả thiết 1: Giả định liên hệ tuyến tính.

- Giả thiết 2: Phương sai có điều kiện không đổi của các phần dư.

- Giả thiết 3: Không có sự tương quan giữa các phần dư.

- Giả thiết 4: Không xảy ra hiện tượng đa cộng tuyến. - Giả thiết 5: Giả thiết về phân phối chuẩn của phần dư. c. Xây dựng mô hình hồi quy

Các bước xây dựng mô hình:

Bước 1: Xem xét ma trận hệ số tương quan

Để xem xét mối quan hệ giữa biến phụ thuộc và các biến độc lập thông qua xây dựng ma trận tương quan. Đồng thời ma trận tương quan là công cụ xem xét mối quan hệ giữa các biến độc lập với nhau nếu các biến này có tương quan chặt thì nguy cơ xảy ra hiện tượng đa cộng tuyến cao dẫn đến việc vi phạm giảđịnh của mô hình.

Bước 2: Đánh giá độ phù hợp của mô hình

Thông qua hệ số R2 ta đánh giá độ phù hợp của mô hình xem mô hình trên giải thích bao nhiêu % sự biến thiên của biến phụ thuộc.

TSS

R2 =

Trong đó:

ESS: tổng bình phương tất cả các sai lệch giữa giá trị dự đoán của Yi và giá trị

trung bình của chúng.

TSS: tổng bình phương sai lệch giữa giá trị Yi và giá trị trung bình của chúng.

Khi đưa càng nhiều biến vào mô hình thì hệ số này càng cao. Tuy nhiên, R2 ở hồi quy bội không phản ánh đúng sự phù hợp của mô hình như trong mô hình hồi quy đơn.

Lúc này, ta phải sử dụng R2 điều chỉnh để đánh giá sự phù hợp của mô hình.

Bước 3: Kiểm định sự phù hợp của mô hình

Sử dụng kiểm định F để kiểm định với giả thiết Ho: B1 = B2 = Bn = 0

Nếu giả thiết này bị bác bỏ thì ta có thể kết luận mô hình ta xây dựng phù hợp với tập dữ liệu.

Bước 4: Xác định tầm quan trọng của các biến

Ý tưởng đánh giá tầm quan trọng tương đối của các biến độc lập trong mô hình thông qua xem xét mức độ tăng của R2 khi một biến giải thích được đưa thêm vào mô hình. Nếu mức độ thay đổi này mà lớn thì chứng tỏ biến này cung cấp thông tin độc nhất về sự phụ thuộc mà các biến khác trong phương trình không có được. Ta đánh giá

tầm quan trọng của một biến thông qua hai hệ số:

Hệ số tương quan từng phần: căn bậc hai của R2 change. Thể hiện mối tương quan

giữa biến Y và X mới đưa vào. Tuy nhiên, sự thay đổi của R2 không thể hiện tỉ lệ phần biến thiên mà một mình biến đó có thể giải thích. Lúc này, ta sử dụng hệ số tương

quan riêng bằng căn bậc 2 của , với:

Bước 5: Lựa chọn biến cho mô hình

Đưa nhiều biến độc lập vào mô hình hồi quy không phải lúc nào cũng tốt vì những lý do sau (trừ khi chúng có tương quan chặt với biến phụ thuộc):

- Mức độ tăng R2 quan sát không hẳn phản ảnh mô hình hồi quy càng phù hợp

hơn với tổng thể.

- Đưa vào các biến không thích đáng sẽ làm tăng sai số chuẩn của tất cả các ước

- Mô hình nhiều biến thì khó giải thích và khó hiểu hơn mô hình ít biến. Ta sử dụng SPSS để giải quyết vấn đề trên. Các thủ tục chọn biến trên SPSS:

Phương pháp đưa vào dần, phương pháp loại trừ dần, phương pháp từng bước (là sự kết hợp của hai phương pháp loại trừ dần và đưa vào dần).

Bước 6: Dò tìm sự vi phạm các giả các giả thiết (đã nêu ở trên bằng các xử lý của SPSS). Ngoài ra, sử dụng phân tích chi bình phương một mẫu để tìm ra quy luật phân phối của mẫu và đánh giá độ tin cậy của thang đo thông qua hệ số Cronbach Alpha

CHƯƠNG III

KẾT QUẢ NGHIÊN CỨU

Một phần của tài liệu đánh giá mức độ hài lòng của doanh nghiệp đối với dịch vụ hải quan một cửa asean tại chi cục hải quan cửa khẩu quốc tế lao bảo tỉnh quảng trị (Trang 56 - 59)

Tải bản đầy đủ (PDF)

(151 trang)