tích vơ hướng 2 vectơ và áp dụng.
- Pt mặt cầu, viết pt mặt cầu, tìm tâm và bán kính của nĩ.
Bài tập trắc nghiệm củng cố :
Câu 1: Trong khơng gian Oxyz cho 2 vectơ →a= (1; 2; 2) và →b= (1; 2; -2); khi đĩ : →a(→a+→b) cĩ giá trị bằng:
A. 10 B. 18 C. 4 D. 8
Câu 2: Trong khơng gian Oxyz, cho 2 vectơ →a= (3; 1; 2) và →b= (2; 0; -1); khi đĩ vectơ 2→a−→b cĩ độ dài bằng:
A. 3 5 B. 29 C. 11 D. 5 3
Câu 3: Trong khơng gian Oxyz, cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là:
A. D(-1; 2; 2) B. D(1; 2 ; -2) C. D(-1;-2 ; 2) D. D(1; -2 ; -2)
Câu 4: Trong khơng gian Oxyz cho 2 điểm A (1;–2;2) và B (–2;0;1). Toạ độ điểm C nằm trên trục Oz để ∆ ABC cân tại C là:
A. C(0;0;2) B. C(0;0;–2) C. C(0;–1;0) D. C(3 3 2
;0;0)
* Hướng dẫn tự học ở nhà: ( 5’)
- GV phát vấn các câu hỏi ở bài tập 3, 4, 5, 6; chủ đề 2; bài 1; chương 3; luận văn.
- HS suy nghĩ và phát hiện cách giải.
Tiết 29 * Kiểm tra bài cũ :(2’)
- Pt mặt cầu cĩ dạng gì? Tâm I; bán kính R tương ứng?
* Bài mới
Hoạt động 1: Pt mặt cầu (Trích bài tập 1 ; 2 ; 3; chủ đề 3; bài 1; chương 3; luận văn)
Bài tập 1: Tìm tâm và bán kính các mặt cầu sau (Dành cho HS từ TB trở xuống) 2 2 2 a) (x 4)+ + y +(z 1)- =4 b) x2 + y2 + z2 – 4x + 2z + 1 =0 c) 2x2 + 2y2 + 2z2 + 6y - 2z - 2 =0
Bài tập 2: Mỗi pt sau cĩ phải là pt mặt cầu khơng. Nếu phải, hãy xác định, tâm và bán kính mặt cầu đĩ: (Dành cho HS Khá)
2 2 2 2 2 2 2 2 1) x y z 2x 4y 1 0 2) 3x 3y 3z 2x 0 3) (x y) 2xy z 1 + + + - + = + + - = + = - +
Bài tập 3: Định m để pt sau là pt mặt cầu. Khi đĩ hãy tìm tâm, bán kính của mặt cầu đĩ: (dành cho HS Giỏi)
2 2 2 2 2 2 2 1) x y z 2mx 2(m 2)y 2(m 3)z 8m 37 0 2) 2x 2y 2z 8mx 12(m 3)y 4(2m 3)z 36m 64m 10 0 + + + + - - + + + = + + - - + + - + - + =
TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 8’ *Chuẩn bị 3 loại phiếu học
tập cho 3 lớp đối tượng . *Chia bảng 5 phần, GV chú ý sửa kỹ bài tập 1 dành chung cả lớp (gọi 3 HS bất kỳ).
* Hai phần bảng cịn lại cho bài tập 2,3.Gọi 2 HS ở nhĩm 2,3. (3b HS cĩ thể làm ở nhà). + HS1 giải câu a. + HS2 giải câu b. Tìm : 2A = - 4; 2B = 0 2C = 2 Suy ra A; B; C Suy ra tâm I; bk R. + HS3 giải câu c Chia hai vế PT cho 2
Suy ra tâm I ; bk R. tương tự câu b.
* Học sinh nhận xét đánh giá. + HS1 giải câu a,b,(c: khơng phải...).
+ HS2 giải câu 3a): ĐK: a2+b2+ − >c2 d 0. Bài tập 1 : Câu a Bài tập 1 : Câu b Bài tập 1 : Câu c Bài tập 2 : Câu a Bài tập 2 : Câu b Bài tập 2 : Câu c Bài tập 3 : Câu a
* Hoạt động 2 : Viết pt mặt cầu (dựa trên bài tập chủ đề 4; bài 1; chương 3; luận văn)
Bài tập 4:Trong khơng gian Oxyz cho hai điểm: A(4;-3;1) và B (0;1;3) a) Viết pt mặt cầu đường kính AB.
b) Viết pt mặt cầu qua gốc toạ độ O và cĩ tâm B.
c) Viết pt mặt cầu tâm nằm trên Oy và qua hai điểm A;B. d) Viết pt mặt cầu cĩ tâm A và tiếp xúc với mp (Oxz).
TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 20’ Gọi 2 HS giải câu a;b.
* Gọi HS1 giải câu a. Hỏi : Viết pt mặt cầu cần biết điều gì? dạng?
+ Tâm = ?
+ Bán kính R = ?
Nhắc lại tâm I; bán kính: R. Dạng pt mặt cầu.
* Gọi HS2 giải câu b Hướng giải câu b Tâm I trùng O Bán kính R = ? Dạng pt mặt cầu?
Gọi học sinh nhận xét đánh giá.
*Cho HS xung phong giải câu c.
Hỏi tâm I thuộc Oy suy ra I cĩ toa độ?
Mặt cầu qua A; B suy ra IA? IB.
Gọi HS nhận xét đánh giá.
*HS1 giải câu a Tâm I trung điểm AB Suy ra tâm I. Bk R = AI hoặc R = AB/2. Viết pt mặt cầu. *HS2 giải câu b. Tâm I trùng O(0;0;0). Bk R = OB. Viết pt mặt cầu. *HS3 giải câu c.
Tâm I thuộc Oy suy ra I(0;y;0)?
Mặt cầu qua A;B suy ra: AI = BI ⇔ AI2 = BI2. Giải pt tìm y. Suy ra tâm I, bán kính R. Viết pt mặt cầu. *Bài tập 4 : Câu a *Bài tập 4 : Câu b. *Bài tập 4 : Câu c:
Tâm I thuộc Oy nên I(0; y; 0).
Mặt cầu qua A;B suy ra AI = BI ⇔ AI2 = BI2⇔ …. ⇔ 8y + 16 = 0 ⇔ y = -2 Tâm I (0;-2;0). R = AI = 18. PT mặt cầu cần tìm. x2 + (y + 2)2 + z2 =18. *Bài tập 4 : Câu d: (A;Ox ) 3 R d= z = . PT mặt cầu cần tìm. (x – 4)2 + (y + 3)2 + (z – 1)2 = 9.
Chú ý : Trong thời gian HS cả lớp hồn thiện bài tập trên, GV cĩ thể phát vấn cho HS khá giỏi tìm cách giải cho các bài tập cịn lại.
* Hoạt động 3: Viết pt mặt cầu cĩ giải hệ (Dựa trên bài tập 3, chủ đề 4; bài 1; chương 3; luận văn).
Bài tập 5.
1) Viết pt mặt cầu (S) đi qua ba điểm A(1;0;0),B(0; 2;0),C(0;0;4)- và gốc tọa độ O.
2)Viết pt mặt cầu (S) đi qua bốn điểm A(4; 1;1),B(3;0;0),C(3;4; 2),D(1;0; 1)- - - .
TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 5’ * GV phân tích để HS thấy được sự cần thiết dùng pt mặt cầu dạng 2. - GV hướng dẫn cho HS lập hệ pt. * Bài tập 4: Câu b, GV hướng dẫn cho HS cách giải hệ 4 ẩn.
* (S) đi qua O, HS phát hiện D = 0
- HS lập hệ 3 ẩn , bấm máy để tìm các hệ số A,B,C.
* HS theo dõi và về nhà làm.
*Bài tập 4 : Câu a
Chú ý : Trong thời gian HS cả lớp hồn thiện bài tập trên, GV cĩ thể phát vấn cho HS khá giỏi tìm cách giải cho các bài tập cịn lại.
* Củng cố tồn bài: (5’) nắm lại cách giải các dạng bài tập trên.
Bài tập trắc nghiệm củng cố :
Câu 1: Trong khơng gian Oxyz, cho mặt cầu (S): x2 + y2 + z2 + 4x – 2z – 4 = 0, (S) cĩ toạ độ tâm I và bán kính R là:
A. I(–2;0;1), R = 3 B. I(4;0;–2), R =1 C. I(0;2;–1), R = 9. D. I(–2;1;0), R = 3.
Câu 2: Trong khơng gian Oxyz ,pt mặt cầu (S) cĩ tâm I(1;- 2; 4) và đi qua A(3;0;3) là :
A. (x -1)2 + (y+2) 2 + (z-4) 2 = 9 B. (x - 1)2 + (y + 2) 2 + (z - 4) 2 = 3 C. (x+1)2 + (y-2) 2 + (z+4) 2 = 9 D. (x + 1)2 + (y - 2) 2 + (z + 4) 2 = 3.
Câu 3: Trong khơng gian Oxyz ,mặt cầu (S) cĩ đường kính OA với A(-2; -2; 4) cĩ pt là:
A. x2 + y2 + z2 + 2x + 2y – 4z = 0 B. x2 + y2 + z2 - 2x - 2y + 4z = 0 C. x2 + y2 + z2 + x + y – 2z = 0 D. x2 + y2 + z2 + 2x + 2y + 4z = 0
* Hướng dẫn tự học ở nhà: (5’) - Hệ thống các dạng bài tập.
- GV chuẩn bị hình vẽ trên bảng phụ để phát vấn các câu hỏi ở bài tập 1, 2; chủ đề 5; bài 1; chương 3; luận văn.