Một số cơ sở vật lý của việc ứng dụng vật liệu nano trong y học hiện đại

111 88 0
Một số cơ sở vật lý của việc ứng dụng vật liệu nano trong y học hiện đại

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

MỞ ĐẦU Nhiều phương pháp chữa bệnh trong y học hiện đại có mối liên hệ mật thiết với các phương pháp vật lý như liệu pháp quang nhiệt, quang động lực hay xạ trị kết hợp với hạt nano vàng (GNP). Các phương pháp này đều dựa vào hiệu ứng nhiệt để tiêu diệt các tế bào bệnh [134, 162]. Bản thân GNP nhờ có hiệu ứng plasmon bề mặt nên hấp thụ và chuyển hóa các tác nhân bên ngoài như ánh sáng và bức xạ thành nhiệt rất nhanh và hiệu quả, từ đó góp phần nâng cao hiệu suất điều trị lên rất nhiều. Các tác nhân quang nhiệt bao gồm vật liệu nano carbon, GNP hoặc chất màu hữu cơ được nghiên cứu và ứng dụng nhiều trong y học như là làm chất đánh dấu sinh học, chẩn đoán và điều trị bệnh [179]. Trong ung thư tiền liệt tuyến, Singh và cộng sự chứng minh tỷ lệ phần trăm tử vong của tế bào phụ thuộc tuyến tính vào sự thay đổi cường độ huỳnh quang trong liệu pháp quang nhiệt [132]. Bên cạnh đó, để hỗ trợ việc ứng dụng vật liệu nano trong cơ thể sống chúng ta cần sử dụng các phương pháp chế tạo ra các vật liệu nano lành tính. Từ những lý do trên trong luận án này chúng tôi muốn tập trung nghiên cứu lý thuyết về cơ chế truyền năng lượng huỳnh quang (Resonance energy transfer - RET) của GNP và giới thiệu một phương pháp thực nghiệm chế tạo chấm lượng tử carbon (carbon quantum dots - CQD) an toàn với cơ thể sống và thân thiện với môi trường, đó là phương pháp plasma - chất lỏng. Cơ thể sống về phương diện vật lý có thể xem như là một hệ nhiệt động mở, các hoạt động và sự tồn tại của cơ thể sống đều liên quan tới sự thay đổi và cân bằng năng lượng trong phức hệ “cơ thể sống - môi trường”. Để hiểu và đánh giá được mối liên hệ chặt chẽ của phức hệ này, làm cơ sở cho việc ứng dụng vật lý trong y học thì những nền tảng về yếu tố sinh học là rất quan trọng [7]. Chẳng hạn như tương tác của ánh sáng, tương tác của sóng siêu âm, tương tác bức xạ ion hóa, tương tác nhiệt độ trên các đối tượng hệ thống sống. Tương tác cơ bản của siêu âm gây nên các tác dụng cơ, nhiệt và sinh học. Tương tác của ánh sáng được thực hiện thông qua các quá trình hấp thụ, tán xạ, khúc xạ, nhưng chỉ có những ánh sáng nào được hấp thụ thì mới gây biến đổi quang sinh học. Tương tác của bức xạ ion hóa gây nên những thay đổi từ mức độ phân tử đến tế bào, tùy thuộc vào độ lớn năng lượng. Có thể thấy rằng tương tác nhiệt hay hiệu ứng nhiệt luôn có mặt trong các loại tương tác trên, đóng vai trò quan trọng trong điều trị và chẩn đoán bệnh. Trong y học, liệu pháp nhiệt được xem là liệu pháp an toàn, ứng dụng để giảm đau, phục hồi chức năng và điều trị bệnh. Bên cạnh đó, người ta nghiên cứu các phương pháp tiềm năng để tiêu diệt tế bào ung thư bằng nhiệt độ, vì tế bào ung thư có thể bị phá hủy ở nhiệt độ khoảng 45 C do sự biến tính protein [76, 118]. Hơn nữa, trong một vài thập kỷ trở lại đây vật liệu nano đã được nghiên cứu rất nhiều trong y sinh [9, 24, 57, 83, 102, 116, 119, 125, 143, 158, 163, 165]. Đặc biệt nổi bật là vật liệu GNP nhờ các tính chất hấp thụ quang học rất tốt, hiệu ứng plasmon bề mặt, đỉnh phát xạ cộng hưởng nằm trong vùng ánh sáng nhìn thấy, khả năng tương thích sinh học cao [34, 102, 134]. Trong những năm gần đây đã có rất nhiều công trình nghiên cứu phương pháp chế tạo các vật liệu nano ứng dụng trong y sinh [1, 14, 22, 30, 41, 82, 98, 128]. Mỗi phương pháp chế tạo đều có ưu điểm riêng nên tùy theo mục đích mà người ta lựa chọn phương pháp thích hợp. Để đưa vào ứng dụng trên cơ thể sống thì vật liệu chế tạo phải đảm bảo an toàn, đồng thời phương pháp chế tạo phải “thân thiện” tức là không sử dụng hóa chất độc hại, không có các tạp chất dư và sau khi xử lý các tạp chất này phải an toàn, quy trình chế tạo nhanh để đáp ứng cả nhu cầu nghiên cứu cơ bản và ứng dụng. Các phương pháp chế tạo vật liệu nano phổ biến hiện nay là các phương pháp nuôi cấy “từ dưới lên” hoặc “từ trên xuống”, tuy nhiên hai cách tiếp cận này đều có quy trình phức tạp, thường sử dụng các tiền chất và các dung môi tạo môi trường phản ứng có tính độc hại cho cơ thể sống (như H 2 SO 4 hay NaOH đậm đặc), thời gian chế tạo kéo dài, nhiệt độ cao, tiêu hao nhiều năng lượng và cần xử lý làm sạch các sản phẩm phụ sau phản ứng [113]. So với hai lớp phương pháp truyền thống trên, kỹ thuật thủy nhiệt có ưu điểm hơn là hạn chế việc sử dụng dung môi độc hại, nhưng quy trình xử lý mẫu lại mất nhiều thời gian. Ở Việt Nam cũng có một số nhóm nghiên cứu mạnh về chế tạo vật liệu nano và ứng dụng trong y sinh [8, 142]. Hiện nay các vật liệu nano dùng trong đánh dấu sinh học thường sử dụng Cadimi. Vật liệu này bị hạn chế trong nghiên cứu y sinh do độc tính của nó gây tổn thương cho tế bào, ví dụ Cd 2+ gây tổn thương gan [32]. Gần đây, các chấm lượng tử, đặc biệt là CQD đã obắt đầu được sử dụng cho những ứng dụng trong y sinh [40, 136]. CQD có những ưu điểm như dễ tan trong môi trường nước, tính tương thích sinh học cao, đỉnh phát xạ nằm trong vùng ánh sáng nhìn thấy [40]. Vấn đề được nhiều người quan tâm là việc lựa chọn phương pháp chế tạo CQD. Ngoài việc lựa chọn phương pháp chế tạo CQD sao cho đảm bảo an toàn cho cơ thể sống thì việc lựa chọn phương pháp thân thiện với môi trường cũng là một yếu tố quan trọng. Vào năm 1928, Irving Langmuir và các cộng sự lần đầu tiên đưa ra khái niệm về plasma [59]. Năm 2013, Akolkara và Sankarana ứng dụng quy trình tương tác giữa plasma và chất lỏng [9], dựa trên hiện tượng điện phân để chế tạo vật liệu nano. Gần đây phương pháp vật lý dựa vào tương tác plasma - chất lỏng dùng chế tạo vật liệu nano đang khá được quan tâm nghiên cứu. Phương pháp này có nhiều ưu điểm so với phương pháp điện hóa hay được sử dụng trước đó. Tương tác của dung dịch với plasma có thể kích hoạt nhiều phản ứng hoá học trong pha lỏng mà không cần nhiều chất phản ứng cũng như chất xúc tác. Phương pháp này hoàn toàn không sử dụng hóa chất độc hại, không làm phát sinh độc tính trong tương tác tạo ra vật liệu nano. So với các phương pháp chế tạo vật liệu nano thông thường, thì phương pháp chế tạo dựa trên tương tác plasma - chất lỏng có thể tạo ra vật liệu “sạch” hơn nên có thể dễ dàng dùng trong y tế. Do vậy trong luận án này chúng tôi tập trung nghiên cứu áp dụng phương pháp chế tạo vật liệu dựa trên tương tác plasma - chất lỏng trong việc chế tạo CQD, làm tiền đề cho các nghiên cứu ứng dụng trong y sinh. Bên cạnh đó, chúng tôi cũng nghiên cứu GNP - một cấu trúc đang được nghiên cứu và ứng dụng nhiều trong chẩn đoán và điều trị với các tính chất độc đáo như hiệu ứng plasmon, ít độc tính, ái lực mạnh với các phân tử sinh học. Một trong những vấn đề quan trọng cho các ứng dụng trong y sinh đó là cơ chế truyền năng lượng. Perrin đã phát hiện hiện tượng tương tác giữa các phân tử trong không gian xa hơn bán kính của chúng trong dung dịch vào năm 1912 [120]. Ông giả thiết tương tác giữa phân tử chất cho và phân tử chất nhận như là tương tác giữa các lưỡng cực điện nằm gần nhau. Các phân tử này được xem là giống nhau, có cùng một tần số dao động cơ bản và sẽ cộng hưởng khi ở gần nhau và chúng không

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI NGUYỄN MINH HOA MỘT SỐ CƠ SỞ VẬT LÝ CỦA VIỆC ỨNG DỤNG VẬT LIỆU NANO TRONG Y HỌC HIỆN ĐẠI LUẬN ÁN TIẾN SĨ VẬT LÝ LÝ THUYẾT VÀ VẬT LÝ TOÁN Hà Nội – 2019 MỤC LỤC Trang DANH MỤC CÁC KÝ HIỆU, VIẾT TẮT .4 MỞ ĐẦU 10 CHƯƠNG TỔNG QUAN VỀ CÁC ỨNG DỤNG MỚI CỦA VẬT LÝ TRONG Y HỌC HIỆN ĐẠI 18 1.1 Mối liên hệ số đại lượng vật lý tác động sinh học .18 1.1.1 Ảnh hưởng nhiệt độ lên thể sống 19 1.1.2 Ảnh hưởng sóng âm lên thể sống 20 1.1.3 Tương tác ánh sáng với thể sống .20 1.1.4 Ảnh hưởng xạ ion hóa lên thể sống 21 1.2 Tiềm ứng dụng cơng nghệ nano chẩn đốn điều trị .22 1.2.1 Trong chẩn đoán 22 1.2.1.1 Kỹ thuật X - quang 23 1.2.1.2 Kỹ thuật siêu âm 23 1.2.1.3 Kỹ thuật MRI 24 1.2.1.4 Kỹ thuật PET/SPECT 24 1.2.1.5 Kỹ thuật CT .25 1.2.2 Trong điều trị 25 CHƯƠNG CHẤM LƯỢNG TỬ CARBON VÀ TIỀM NĂNG ỨNG DỤNG TRONG CHẨN ĐOÁN VÀ ĐIỀU TRỊ .31 2.1 Chấm lượng tử carbon .31 2.1.1 Công nghệ chế tạo 33 2.1.2 Tính chất quang chấm lượng tử carbon .37 2.1.2.1 Tính chất hấp thụ .37 2.1.2.2 Tính chất quang huỳnh quang 38 2.1.3 Tiềm ứng dụng lĩnh vực chẩn đoán điều trị 41 2.2 Thực nghiệm chế tạo chấm lượng tử carbon 44 2.2.1 Công nghệ chế tạo 44 2.2.2 Phương pháp khảo sát 46 2.2.2.1 Hiển vi điện tử truyền qua 46 2.2.2.2 Hấp thụ quang 46 2.2.2.3 Quang huỳnh quang 47 2.2.2.4 Phương pháp đo tán xạ ánh sáng động học .47 2.3 Kết thảo luận 48 2.3.1 Các đặc trưng hình dạng kích thước CQD 48 2.3.2 Tính chất hấp thụ quang huỳnh quang CQD 51 CHƯƠNG MƠ HÌNH HĨA CƠ CHẾ TRUYỀN NĂNG LƯỢNG CỦA HẠT NANO VÀNG VÀ ĐỊNH HƯỚNG ỨNG DỤNG TRONG CHẨN ĐOÁN VÀ ĐIỀU TRỊ 57 3.1 Hạt nano vàng .57 3.1.1 Giới thiệu hạt nano vàng 57 3.1.2 Một số tính chất đặc trưng 60 3.1.2.1 Cộng hưởng plasmon bề mặt 60 3.1.2.2 Hấp thụ tán xạ plasmon bề mặt 62 3.1.2.3 Thuộc tính khơng xạ 64 3.1.3 Truyền lượng huỳnh quang 65 3.1.3.1 Truyền lượng cộng hưởng huỳnh quang 66 3.1.3.2 Truyền cộng hưởng lượng bề mặt - SET 70 3.1.3.3 Truyền lượng Coulomb - CET .72 3.1.4 Tiềm ứng dụng chẩn đoán điều trị GNP .73 3.1.4.1 Liệu pháp quang động lực .73 3.1.4.3 Kỹ thuật hình ảnh 74 3.2.2 Mơ hình hóa chế truyền lượng phụ thuộc kích thước GNP 77 3.2.3 Mơ hình phụ thuộc cường độ huỳnh quang vào nồng độ GNP 82 3.2.3.1 Lý thuyết thống truyền lượng 83 3.2.3.2 Mơ hình phụ thuộc cường độ huỳnh quang vào nồng độ GNP (GFRET) 84 KẾT LUẬN VÀ KIẾN NGHỊ .94 DANH MỤC CÁC CƠNG TRÌNH CƠNG BỐ .96 TÀI LIỆU THAM KHẢO .97 DANH MỤC CÁC KÝ HIỆU, VIẾT TẮT A : acceptor, phân tử nhận huỳnh quang Abs : hấp thụ CQD : chấm lượng tử carbon CET : trình truyền lượng Coulomb CT : chụp cắt lớp vi tính D : donnor, phân tử truyền huỳnh quang DNA : axit deoxyribonucleic DLS : tán xạ ánh sáng động học FDA : Cục Dược phẩm Hoa kỳ FWHM : độ bán rộng phổ FRET : trình truyền lượng cộng hưởng Foster GFRET : trình truyền lượng cộng hưởng khổng lồ GNP : hạt nano vàng GRET : trình truyền lượng cộng hưởng chung Invivo : mô tả tượng sinh học xảy thể sống MRI : chụp cộng hưởng từ hạt nhân NIR : ánh sáng hồng ngoại gần PdI : số đa phân tán PEG : polyethylene glycol PPEI – EI : propionylethylenimine - co - ethylenimine PET : chụp xạ hình cắt lớp positron PL : Quang huỳnh quang QD : chấm lượng tử RET : trình truyền lượng cộng hưởng SET : trình truyền lượng cộng hưởng bề mặt SPECT : chụp cắt lớp xạ đơn photon SPR : tượng cộng hưởng plasmon bề mặt TEM : hiển vi điện tử truyền qua UV-vis : vùng ánh sáng nhìn thấy DANH MỤC CÁC BẢNG Bảng Tóm tắt ưu nhược điểm phương pháp chế tạo CQD 35 Bảng Bảng giá trị bán kính Forster theo kích thước GNP .80 Bảng Các thơng số so sánh mơ hình lý thuyết với liệu thực nghiệm 89 DANH MỤC CÁC HÌNH ẢNH VÀ ĐỒ THỊ Hình 1.1 Sơ đồ minh họa mối liên hệ tác động sinh học tác nhân vật lý lên hệ thống sống .18 Hình 1.2 Sơ đồ minh họa tác động sóng âm lên thể sống 20 Hình 1.3 Sơ đồ điều trị ung thư liệu pháp quang nhiệt plasmon phân phối GNP tới tế bào ung thư 28 Hình 2.1 Các cấu trúc khác nano carbon theo thời gian nghiên cứu 33 Hình 2.2 Sơ đồ minh họa chế tạo CQD phương pháp từ xuống từ lên 34 Hình 2.3 Phổ Abs phổ PL CQD-PPEI-EI phân tán nước kích thích với bước sóng khác 20 nm 400 nm Hình nhỏ bên phổ PL chuẩn hóa cường độ .38 Hình 2.4 (a) Hình ảnh quang học dung dịch hạt nano carbon chiếu ánh sáng trắng (trên), 312 nm (giữa) phổ PL (dưới); (b) Sự khơng phụ thuộc vào bước sóng kích thích vị trí đỉnh PL 39 Hình 2.5 (a) Phổ kích thích phổ PL hạt CQD phân tán nước kích thích với bước sóng từ 290-500 nm; (b) tính chất huỳnh quang chuyển đổi ngược CQD Phổ PL CQD phân tán nước kích thích với bước sóng từ 805 nm đến 1035 nm 41 Hình 2.6 Hình ảnh kỹ thuật số ảnh huỳnh quang in vivo CQD tiêm vào chuột chụp bước sóng kích thích khác 42 Hình 2.7 Sơ đồ thiết kế hệ Micro - plasma để chế tạo CQD 45 Hình 2.8 (a) Ảnh TEM CQD, (b) Sự phân bố kích thước trung bình CQD xác định từ ảnh TEM 49 Hình 2.9 Sự phân bố kích thước theo số hạt (đường màu đen nối điểm hình sao) theo cường độ (đường màu xanh nối điểm hình vng) CQD thu từ phổ DLS .50 Hình 2.10 Phổ Abs (đường nét liền) đạo hàm bậc hai phổ hấp thụ (đường nét đứt) CQD 51 Hình 2.11 Dung dịch CQD sau kích thích ánh sáng trắng (trái) ánh sáng có bước sóng 405 nm (phải) .52 Hình 2.12 Phổ hấp thụ (đường nét liền) phổ huỳnh quang chuẩn hóa cường độ (đường nét đứt) CQD 53 Hình 2.13 Phổ hấp thụ phổ PL CQD kích thích bước sóng khác từ 340 nm đến 460nm với khoảng tăng 20 nm (Hình nhỏ bên phổ PL chuẩn hóa cường độ) 54 Hình 2.14 Bước sóng phát xạ CQD phụ thuộc vào bước sóng kích thích khác từ 340 nm đến 460 nm với khoảng tăng 20 nm .55 Hình 3.1 Sơ đồ minh họa kích thước số thể thực thang đo nm 58 Hình 3.2 Minh họa cấu trúc vùng lượng vật liệu khối vật liệu nano Khi kích thước hạt nano giảm lượng vùng cấm tăng lên 59 Hình 3.3 (a) Sơ đồ minh họa cộng hưởng plasmon bề mặt hạt nano kim loại; (b) Phổ Abs GNP có kích thước khác .60 Hình 3.4 Sự phụ thuộc hiệu suất theo bước sóng kích thước (a) 20 nm; (b) 40 nm; (c) 80 nm Đường màu xanh trình hấp thụ, đường màu đỏ nét đứt trình tán xạ, đường màu đen nét đứt hệ số dập tắt (d) Sự phụ thuộc tỷ lệ tiết diện tán xạ tiết diện dập tắt vào kích thước 63 Hình 3.5 Sự tương tác hạt phát quang bị kích thích với bề mặt kim loại dày thông qua trường gần trường xa Hình tương tác trường gần với bề mặt kim loại mỏng 65 Hình 3.6 Giản đồ Jablonski truyền lượng cộng hưởng từ trạng thái kích thích D đến trạng thái A Đường màu xanh da trời (D truyền lượng cho A) Đường màu xanh (quá trình hấp thụ D), đường màu đỏ nét liền (quá trình phát huỳnh quang D), màu đỏ nét đứt (q trình truyền lượng khơng xạ D), màu xanh nét đứt (q trình kích thích hấp thụ lượng khơng xạ A), đường màu vàng (quá trình hồi phục photon) 67 Hình 3.7 Phổ Abs (màu đỏ) phổ PL (màu xanh) D A Vùng màu nâu mũi tên phần phủ phổ PL D phổ Abs A .68 Hình 3.8 (a) Đồ thị biểu diễn Ei (d , x,i ) (b) đạo hàm bậc theo kích thước Đường nét đứt (FRET), đường nét liền (SET) 76 Hình 3.9 Sơ đồ cấu trúc hệ phân tử huỳnh quang - DNA – GNP 78 Hình 3.10 Đồ thị mơ tả kết so sánh hai chế FRET SET với liệu thực nghiệm với GNP có bán kính khác nhau: (a) 0,945 nm, (b) 1,5 nm, (c) nm 79 Hình 3.11 Giá trị trung bình lượng đảo ngược chung y bán kính GNP hình cầu .81 Hình 3.12 Giản đồ Feynman cho trình truyền lượng từ D sang A 83 Hình 3.13 Sự phụ thuộc vào nồng độ tần số phát xạ cường độ phát quang .86 Hình 3.14 (a) Đồ thị mơ tả tỷ lệ đóng góp CET với FRET; (b) tỷ lệ đóng góp SET với FRET RET theo khoảng cách tần số phát xạ 87 Hình 3.15 Mơ hình lý thuyết áp dụng cho hệ RET cặp A - D khác nhau: (a) OBs – GNP, (b) QD CdTe – GNP, (c) RBDSNPs – GNP .89 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ LIÊN QUAN ĐẾN LUẬN ÁN Nguyễn Minh Hoa, Chu Việt Hà, Đỗ Thị Nga, Nguyễn Trí Lân, Nguyễn Ái Việt (2016), “Simple Model for Gold Nano Particles Concentration Dependence of Resonance Energy Transfer Intensity”, Journal of Physics: Conference Series, 726 (1), 012009 Nguyễn Minh Hoa, Trần Hồng Nhung, Tô Thị Thảo, Lương Thị Thêu, Nguyễn Ái Việt (2017), “On the Concentration Dependence of Metallic Nano-Particles in Enhanced Forster Resonance Energy Transfer”, Journal of Physics: Conference Series, 856 (1), 012005 Đỗ Hồng Tùng, Trần Thị Thương, Nguyễn Đình Cơng, Nguyễn Thanh Liêm, Nguyễn Văn Khá, Lê Hồng Mạnh, Phạm Hồng Minh, Nguyễn Thị Thu Thủy, Nguyễn Minh Hoa (2017), “Facile synthesis of carbon quantum dots by plasma – liquid interaction method”, Communications in Physics, 27(4), pp 343-348 Nguyễn Minh Hoa, Lê Anh Thi, Trần Thị Nhàn, Đinh Như Thảo, Đỗ Hoàng Tùng (2018), “Nghiên cứu chế truyền lượng cộng hưởng sử dụng hạt nano vàng định hướng ứng dụng y sinh”, Tạp chí Khoa học Trường ĐHSP Hà Nội 2, 55 (1), pp 42 - 48 96 TÀI LIỆU THAM KHẢO Tiếng việt 10 11 12 13 14 15 Chu Việt Hà (2012), Nghiên cứu trình phát quang sở vật liệu nano chứa tâm màu định hướng đánh dấu sinh học, Luận án Tiến sĩ, Viện Vật lý, Hà Nội Đoàn Suy Nghĩ, Lê Văn Trọng (2005), Lý sinh học, NXB Đại học Huế, Huế Nguyễn Bá Hưng (2009), Lý sinh y học, Nhà xuất quân đội nhân dân, Hà Nội Nguyễn Hữu Điền (2005), Phục hồi chức - Vật lý trị liệu, Nhà xuất Hà Nội, Hà Nội Trần Đại Lâm Nguyễn Tuấn Dung, Nguyễn Lê Huy, Lê Viết Hải (2017), Các phương pháp phân tích Hóa Lý Vật Liệu, Nhà xuất Khoa học tự nhiên Công nghệ, Viện Hàn lâm Khoa học Công nghệ Việt Nam, Hà Nội Vũ Công Lập Đỗ Kiên Cường, Nguyễn Đông Sơn, Trần Công Duyệt, Hà Viết Hiền, Lê Mạnh Hải, Nguyễn Thanh Phương, Huỳnh Việt Dũng (2005), Các tác nhân vật lý thường dùng Vật lý trị liệu, Hội Thiết Bị Y Tế Việt Nam - Phân Viện Vật Lý Y Sinh Học, Hà Nội Vũ Công Lập Nguyễn Đông Sơn, Trần Công Duyệt, Hà Viết Hiền, Huỳnh Việt Dũng, Đặng Vũ Hoàng (2009), Cơ sở vật lý y sinh học, Nhà Xuất Y học, Hà Nội Vũ Thị Thùy Dương, Trịnh Thị Thương, Vũ Dương, Nguyễn Thị Thùy, Nghiêm Thị Hà Liên, Đỗ Quang Hòa, Trần Hồng Nhung (2016), "Hiệu ứng quang nhiệt hạt nano vàng cấu trúc lõi/vỏ mơ", Tạp chí Khoa học Công nghệ 54(1), pp 74-81 Akolkar Rohan and Sankaran R Mohan (2013), "Charge transfer processes at the interface between plasmas and liquids", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 31(5), pp 050811-050825 Andrews D L (1989), "A unified theory of radiative and radiationless molecular energy transfer", Chemical Physics 135(2), pp 195-201 Andrews David L and Bradshaw David S (2004), "Virtual photons, dipole fields and energy transfer: A quantum electrodynamical approach", European Journal of Physics 25(6), pp 845-858 Baffou Guillaume (2018), "Gold nanoparticles as nanosources of heat", Photoniques, pp 42-47 Baker Sheila N and Baker Gary A (2010), "Luminescent carbon nanodots: Emergent nanolights", Angewandte Chemie - International Edition 49(38), pp 6726-6744 Bianco A., Kostarelos K., and Prato M (2005), "Applications of carbon nanotubes in drug delivery", Curr Opin Chem Biol 9(6), pp 674-9 Bjørnerud A., Johansson L O., and Ahlström H K (2001), "Pre-clinical results with clariscan™ (NC100150 Injection); experience from different 97 16 17 18 19 20 21 22 23 24 25 26 27 disease models", Magnetic Resonance Materials in Physics, Biology and Medicine 12(2-3), pp 99-103 Breshike Christopher J., Riskowski Ryan A., and Strouse Geoffrey F (2013), "Leaving Förster resonance energy transfer behind: Nanometal surface energy transfer predicts the size-enhanced energy coupling between a metal nanoparticle and an emitting dipole", Journal of Physical Chemistry C 117(45), pp 23942-23949 Brivio D., Zygmanski P., Arnoldussen M., Hanlon J., Chell E., Sajo E., Makrigiorgos G M., and Ngwa W (2015), "Kilovoltage radiosurgery with gold nanoparticles for neovascular age-related macular degeneration (AMD): A Monte Carlo evaluation", Physics in Medicine and Biology 60(24), pp 9203-9213 Bunt G and Wouters F S (2004), "Visualization of molecular activities inside living cells with fluorescent labels", Int Rev Cytol 237, pp 205-77 Cao L., Yang S T., Wang X., Luo P G., Liu J H., Sahu S., Liu Y., and Sun Y P (2012), "Competitive performance of carbon "quantum" dots in optical bioimaging", Theranostics 2(3), pp 295-301 Chance RR, Prock A, and Silbey R %J Advances in chemical physics (1978), "Molecular fluorescence and energy transfer near interfaces" 37, pp 1-65 Chapman Edwin R., Alexander Kenneth, Vorherr Thomas, Carafoli Ernesto, and Storm Daniel R (1992), "Fluorescence energy transfer analysis of calmodulin.cntdot.peptide complexes", Biochemistry 31(51), pp 1281912825 Chen Bisang, Li Feiming, Li Shunxing, Weng Wen, Guo Hongxu, Guo Tao, Zhang Xiaoyang, Chen Yabin, Huang Tingting, Hong Xiaolin, You Shiyu, Lin Yuemei, Zeng Kunhong, and Chen Shen (2013), "Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging", Nanoscale 5(5), pp 1967-1971 Chen Miao Guo Jie Huang Yibin Deng He Shen Yufei Ma Mengxin Zhang Aijun Zhu Yanli Li He Hui Yangyun Wang Xiangliang Yang Zhijun Zhang Huabing (2014), "pH‐Responsive Cyanine‐Grafted Graphene Oxide for Fluorescence Resonance Energy Transfer‐Enhanced Photothermal Therapy" Cheng X., Sun R., Yin L., Chai Z., Shi H., and Gao M (2017), "LightTriggered Assembly of Gold Nanoparticles for Photothermal Therapy and Photoacoustic Imaging of Tumors In Vivo", Adv Mater 29(6) Cormode David P., Skajaa Torjus, Fayad Zahi A., and Mulder Willem J M (2009), "Nanotechnology in medical imaging: Probe design and applications", Arteriosclerosis, Thrombosis, and Vascular Biology 29(7), pp 992-1000 Coulomb C A (1986), "The theory of simple machines", Mem Math Phys Acad Sci 10(4), pp 161-331 Coulomb Charles %J Électricitie et Le Magnétisme (1785), "Second Mémoire sur L", pp 578-611 98 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 Creighton J Alan and Eadon Desmond G (1991), "Ultraviolet-visible absorption spectra of the colloidal metallic elements", Journal of the Chemical Society, Faraday Transactions 87(24), pp 3881-3891 D Carolan P Maguire, V Svrcek and D Mariotti1 (2017), "MicroplasmaLiquid Synthesis of Carbon Based Quantum Dots with Remarkable Optical Properties", Proceedings International Plasma Chemistry Society 23, Montreal, pp 1-3 De Bibekananda and Karak Niranjan (2013), "A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice", RSC Advances 3(22), pp 8286-8290 Deng Y., Kizer M., Rada M., Sage J., Wang X., Cheon D J., and Chung A J (2018), "Intracellular Delivery of Nanomaterials via an Inertial Microfluidic Cell Hydroporator", Nano Lett 18(4), pp 2705-2710 Derfus Austin M., Chan Warren C W., and Bhatia Sangeeta N (2004), "Probing the Cytotoxicity of Semiconductor Quantum Dots", Nano Letters 4(1), pp 11-18 El-Sayed M A (2001), "Some interesting properties of metals confined in time and nanometer space of different shapes", Accounts of Chemical Research 34(4), pp 257-264 Elahi N., Kamali M., and Baghersad M H (2018), "Recent biomedical applications of gold nanoparticles: A review", Talanta 184, pp 537-556 Faraday M (1857), "The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light", Philosophical Transactions of the Royal Society of London 147(0), pp 145-181 Foerster Th (1948), "Intermolecular Energy Migration and Fluorescence", Annalen der Physik 2, pp 55 75 Forster T (1959), "Transfer Mechanisms of Electronic Excitation", Disc Far Soc 27, pp 7-17 Forster Th (1946), "Energiewanderung und Fluoreszenz", Die Naturwissenschaften 33(6), pp 166-175 Forster Theodor (2012), "Energy migration and fluorescence", Journal of Biomedical Optics 17(1), pp 011002-011012 Gao X., Cui Y., Levenson R M., Chung L W., and Nie S (2004), "In vivo cancer targeting and imaging with semiconductor quantum dots", Nat Biotechnol 22(8), pp 969-76 Gao X., Ding C., Zhu A., and Tian Y (2014), "Carbon-dot-based ratiometric fluorescent probe for imaging and biosensing of superoxide anion in live cells", Analytical chemistry 86(14), pp 7071-7078 Ghosh S K and Pal T (2007), "Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications", Chem Rev 107(11), pp 4797-862 99 43 44 45 46 47 48 49 50 51 52 53 54 55 Gómez-Hens A., Fernández-Romero J M., and Aguilar-Caballos M P (2008), "Nanostructures as analytical tools in bioassays", TrAC - Trends in Analytical Chemistry 27(5), pp 394-406 Goryacheva Irina Yu, Sapelkin Andrei V., and Sukhorukov Gleb B (2017), "Carbon nanodots: Mechanisms of photoluminescence and principles of application", TrAC Trends in Analytical Chemistry 90, pp 27-37 Hainfeld James F., Slatkin Daniel N., and Smilowitz Henry M (2004), "The use of gold nanoparticles to enhance radiotherapy in mice", Physics in Medicine and Biology 49(18), pp N309-N315 Han Lei, Ghosh Debraj, Chen Wei, Pradhan Sulolit, Chang Xijun, and Chen Shaowei (2009), "Nanosized carbon particles from natural gas soot", Chemistry of Materials 21(13), pp 2803-2809 Haugland R P., Yguerabide J., and Stryer L (1969), "Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap", Proceedings of the National Academy of Sciences of the United States of America 63(1), pp 23-30 Heyduk Tomasz (2002), "Measuring protein conformational changes by FRET/LRET", Current Opinion in Biotechnology 13(4), pp 292-296 Hogemann D., Josephson L., Weissleder R., and Basilion J P (2000), "Improvement of MRI probes to allow efficient detection of gene expression", Bioconjugate Chemistry 11(6), pp 941-946 Huang Hong, Lv Jing-Jing, Zhou Dan-Ling, Bao Ning, Xu Yue, Wang Ai-Jun, and Feng Jiu-Ju (2013), "One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions", RSC Advances 3(44), pp 21691-21691 Huang Jia Jia, Zhong Zhen Feng, Rong Min Zhi, Zhou Xiang, Chen Xu Dong, and Zhang Ming Qiu (2014), "An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency", Carbon 70, pp 190-198 Huang X Z., Zhong X X., Lu Y., Li Y S., Rider A E., Furman S A., and Ostrikov K (2013), "Plasmonic Ag nanoparticles via environment-benign atmospheric microplasma electrochemistry", Nanotechnology 24(9), p 095604 Huang Xiaohua, Jain Prashant K., El-Sayed Ivan H., and El-Sayed Mostafa A (2007), "Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy", Nanomedicine 2(5), pp 681693 Huang Xiaohua, Jain Prashant K., El-Sayed Ivan H., and El-Sayed Mostafa A (2008), "Plasmonic photothermal therapy (PPTT) using gold nanoparticles", Lasers in Medical Science 23(3), pp 217-228 Huang Xunzhi, Li Yongsheng, Zhong Xiaoxia, Rider Amanda E., and Ostrikov Kostya Ken (2015), "Fast Microplasma Synthesis of Blue 100 56 57 58 59 60 61 62 63 64 65 66 67 68 Luminescent Carbon Quantum Dots at Ambient Conditions", Plasma Processes and Polymers 12(1), pp 59-65 Hussain Syed Arshad (2009), "An introduction to fluorescence resonance energy transfer (FRET)", arXiv preprint arXiv:0908.1815 Idris Niagara Muhammad, Gnanasammandhan Muthu Kumara, Zhang Jing, Ho Paul C., Mahendran Ratha, and Zhang Yong (2012), "In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers", Nature Medicine 18(10), pp 1580-1585 Irani Shiva, Shahmirani Zhohreh, Atyabi Seyed Mohammad, and Mirpoor Shahriar (2015), "Induction of growth arrest in colorectal cancer cells by cold plasma and gold nanoparticles", Archives of Medical Science 11(6), pp 12861295 Irving Langmuir Researchlaboratory By, Eixctric Co GsERALu, and NsCtady S C H (1928), "Oscillations in Ionized Gases", Nature Phys Rev Naturwiss Bethe, Ibid Andrewes Proc Roy Soc 14(117), pp 317-705 Jain P K., Lee K S., El-Sayed I H., and El-Sayed M A (2006), "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine", J Phys Chem B 110(14), pp 7238-48 Jain Prashant K., El-Sayed Ivan H., and El-Sayed Mostafa A (2007), "Au nanoparticles target cancer", Nano Today 2(1), pp 18-29 Jain Prashant K., Huang Xiaohua, El-Sayed Ivan H., and El-Sayed Mostafa A (2007), "Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems", Plasmonics 2(3), pp 107-118 Jain Prashant K., Huang Xiaohua, El-sayed Ivan H., and El-sayed Mostafa A (2008), "Noble Metals on the Nanoscale : Optical and Photothermal Properties and Some Applications in Imaging , Sensing , Biology , and Medicine", American Chemical Society 41(12), pp 7-9 Jares-Erijman Elizabeth A and Jovin Thomas M (2003), "FRET imaging", Nature Biotechnology 21(11), pp 1387-1395 Jia Xiaofang, Li Jing, and Wang Erkang (2012), "One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence", Nanoscale 4(18), pp 5572-5575 Jun Young Wook, Lee Jae Hyun, and Cheon Jinwoo (2008), "Chemical design of nanoparticle probes for high-performance magnetic resonance imaging", Angewandte Chemie - International Edition 47(28), pp 5122-5135 Juzenas Petras, Kleinauskas Andrius, George Luo Pengju, and Sun Ya Ping (2013), "Photoactivatable carbon nanodots for cancer therapy", Applied Physics Letters 103(6) Kerker M (2013), The scattering of light and other electromagnetic radiation, Academic press 101 69 70 71 72 73 74 75 76 77 78 79 80 81 Kim J., Park J., Kim H., Singha K., and Kim W J (2013), "Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA", Biomaterials 34(29), pp 7168-80 Kircher Moritz F., Allport Jennifer R., Graves Edward E., Love Victoria, Josephson Lee, Lichtman Andrew H., and Weissleder Ralph (2003), "In Vivo High Resolution Three-Dimensional Imaging of Antigen-Specific Cytotoxic T-Lymphocyte Trafficking to Tumors", Cancer Research 63(20), pp 68386846 Kreibig Uwe and Vollmer Michael (1995), "Optical Properties of Metal Clusters", Springer Ser Mater Sci 25(25), pp 117-117 Kwatra Deep, Venugopal Anand, and Anant Shrikant (2013), "Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer", Translational Cancer Research 2(4), pp 330342 Lai S F., Ko B H., Chien C C., Chang C J., Yang S M., Chen H H., Petibois C., Hueng D Y., Ka S M., Chen A., Margaritondo G., and Hwu Y (2015), "Gold nanoparticles as multimodality imaging agents for brain gliomas", J Nanobiotechnology 13(1), pp 85-93 Lakowicz Joseph R (2005), "Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission", Analytical Biochemistry 337(2), pp 171-194 Lee Kyeong Seok and El-Sayed Mostafa A (2005), "Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index", Journal of Physical Chemistry B 109(43), pp 20331-20338 Lepock James R (2003), "Cellular effects of hyperthermia: Relevance to the minimum dose for thermal damage", International Journal of Hyperthermia 19(3), pp 252-266 Li Fan, Liu Changjun, Yang Jian, Wang Zheng, Liu Wenguang, and Tian Feng (2014), "Mg/N double doping strategy to fabricate extremely high luminescent carbon dots for bioimaging", RSC Advances 4(7), pp 3201-3205 Li Haitao, He Xiaodie, Kang Zhenhui, Huang Hui, Liu Yang, Liu Jinglin, Lian Suoyuan, Tsang Chi Him A., Yang Xiaobao, and Lee Shuit Tong (2010), "Water-soluble fluorescent carbon quantum dots and photocatalyst design", Angewandte Chemie - International Edition 49(26), pp 4430-4434 Li Haitao, Kang Zhenhui, Liu Yang, and Lee Shuit-Tong (2012), "Carbon nanodots: synthesis, properties and applications", Journal of Materials Chemistry 22(46), pp 24230-24230 Li Haitao, Kang Zhenhui, Liu Yang, and Lee Shuit-Tong %J Journal of materials chemistry (2012), "Carbon nanodots: synthesis, properties and applications" 22(46), pp 24230-24253 Li Shanghao, Wang Lingyu, Chusuei Charles C., Suarez Valentina M., Blackwelder Patrica L., Micic Miodrag, Orbulescu Jhony, and Leblanc Roger 102 82 83 84 85 86 87 88 89 90 91 92 93 94 M (2015), "Nontoxic Carbon Dots Potently Inhibit Human Insulin Fibrillation", Chemistry of Materials 27(5), pp 1764-1771 Li Xiangyou, Wang Hongqiang, Shimizu Yoshiki, Pyatenko Alexander, Kawaguchi Kenji, and Koshizaki Naoto (2011), "Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents", Chemical Communications 47(3), pp 932-934 Lim S Y., Shen W., and Gao Z (2015), "Carbon quantum dots and their applications", Chem Soc Rev 44(1), pp 362-81 Lim Yong Taik, Cho Mi Young, Choi Bang Sil, Lee Jung Min, and Chung Bong Hyun (2008), "Paramagnetic gold nanostructures for dual modal bioimaging and phototherapy of cancer cells", Chemical Communications(40), pp 4930-4932 Lin Zhen, Xue Wei, Chen Hui, and Lin Jin Ming (2012), "Classical oxidant induced chemiluminescence of fluorescent carbon dots", Chemical Communications 48(7), pp 1051-1053 Link S., Burda C., Mohamed M B., Nikoobakht B., and El-Sayed M A (1999), "Laser Photothermal Melting and Fragmentation of Gold Nanorods: Energy and Laser Pulse-Width Dependence", The Journal of Physical Chemistry A 103(9), pp 1165-1170 Link S., Burda C., Nikoobakht B., and El-Sayed M a (2000), "Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses", J Phys Chem B 104(26), pp 6152-6163 Link S and El-Sayed Mostafa A (1999), "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles", Journal of Physical Chemistry B 103(21), pp 4212-4217 Link Stephan and El-Sayed Mostafa A (2003), "Optical properties and ultrafast dynamics of metallic nanocrystals", Annual Review of Physical Chemistry 54(1), pp 331-366 Link Stephan and El-Sayed Mustafa (2000), "Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals", Int Rev Phys Chem 19(3), pp 409-453 Link Stephan, Furube Akihiro, Mohamed Mona B., Asahi Tsuyoshi, Masuhara Hiroshi, and El-Sayed Mostafa a (2002), "Hot electron relaxation dynamics of gold nanoparticles embedded in MgSO4 powder compared to solution: The effect of the surrounding medium", J Phys Chem B 106(5), pp 945-955 Link Stephan, Hathcock David J., Nikoobakht Babak, and El-Sayed Mostafa A (2003), "Medium effect on the electron cooling dynamics in gold nanorods and truncated tetrahedra", Advanced Materials 15(5), pp 393-396 Lipinski Christopher and Hopkins Andrew (2004), "Navigating chemical space for biology and medicine", Nature 432(7019), pp 855-861 Liu Haipeng, Ye Tao, and Mao Chengde (2007), "Fluorescent carbon nanoparticles derived from candle soot", Angewandte Chemie - International Edition 46(34), pp 6473-6475 103 95 96 97 98 99 100 101 102 103 104 105 106 Liu Jia Jun, Yuan Dan, Zhang Hong Zhi, Lu Yuan Ding, Wang Ni, Zou Hong Yan, and Wang Jian (2018), "Rapid detection of heparin by gold nanorods and near-infrared fluorophore ensemble based platform via nanometal surface energy transfer", Sensors and Actuators B: Chemical 274, pp 318-323 Liu Jun, Levine Andrea L., Mattoon John S., Yamaguchi Mamoru, Lee Robert J., Pan Xueliang, and Rosol Thomas J (2006), "Nanoparticles as image enhancing agents for ultrasonography", Physics in Medicine and Biology 51(9), pp 2179-2189 Liu Xiangjun, Zhang Nan, Bing Tao, and Shangguan Dihua (2014), "Carbon dots based dual-emission silica nanoparticles as a ratiometric nanosensor for Cu2+", Analytical Chemistry 86(5), pp 2289-2296 Liu Y., Li H T., He X D., Yu H., Kang Z H., and Lee S T (2011), "Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment", Materials Research Bulletin 46(1), pp 147-151 Liu Zhuang, Robinson Joshua T, Sun Xiaoming, and Dai Hongjie %J Journal of the American Chemical Society (2008), "PEGylated nanographene oxide for delivery of water-insoluble cancer drugs" 130(33), pp 10876-10877 Lu Yue, Zhang Ling, and Lin Hengwei (2014), "The use of a microreactor for rapid screening of the reaction conditions and investigation of the photoluminescence mechanism of carbon dots", Chemistry - A European Journal 20(15), pp 4246-4250 Mackey M A., Ali, M R., Austin, L A., Near, R D., & El-Sayed, M A (2014), "The Most Effective Gold Nanorod Size for Plasmonic Photothermal Therapy: Theory and In Vitro Experiments", The Journal of Physical Chemistry B 118(5), pp 1319-1326 Manjunath H M., Joshi C G., and Raju N G (2017), "Biofabrication of gold nanoparticles using marine endophytic fungus - Penicillium citrinum", IET Nanobiotechnol 11(1), pp 40-44 Mao Yan, Bao Yu, Han Dongxue, Li Fenghua, and Niu Li (2012), "Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing", Biosensors and Bioelectronics 38(1), pp 55-60 Mariotti Davide and Sankaran R Mohan (2010), "Microplasmas for nanomaterials synthesis", Journal of Physics D: Applied Physics 43(32) Mehta V N., Jha S., and Kailasa S K (2014), "One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells", Materials Science and Engineering C 38(1), pp 20-27 Meyyappan M (2009), "A review of plasma enhanced chemical vapour deposition of carbon nanotubes", Journal of Physics D: Applied Physics 42(21) 104 107 108 109 110 111 112 113 114 115 116 117 118 119 Meyyappan M., Delzeit Lance, Cassell Alan, and Hash David (2003), "Carbon nanotube growth by PECVD: a review", Plasma Sources Science and Technology 12(2), pp 205-216 Mie Gustav (1908), "A contribution to the optics of turbid media, especially colloidal metallic suspensions", Ann Phys 25, pp 337-445 Mishra Pratik, Ray Sambit, Sinha Sayantan, Das Bhaskar, Khan Md Imran, Behera Susant K., Yun Soon-Il, Tripathy Suraj K., and Mishra Amrita (2016), "Facile bio-synthesis of gold nanoparticles by using extract of Hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition", Biochemical Engineering Journal 105, pp 264-272 Namdari P., Negahdari B., and Eatemadi A (2017), "Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review", Biomed Pharmacother 87, pp 209-222 Narang J., Malhotra N., Singh G., and Pundir C S (2015), "Electrochemical impediometric detection of anti-HIV drug taking gold nanorods as a sensing interface", Biosens Bioelectron 66, pp 332-7 Niidome Yasuro, Takahashi Hironobu, Urakawa Shinji, Nishioka Koji, and Yamada Sunao (2004), "Immobilization of Gold Nanorods on the Glass Substrate by the Electrostatic Interactions for Localized Plasmon Sensing", Chemistry Letters 33(4), pp 454-455 Nolan Andrew Steven (2015), Synthesis and applications of carbon dots, The University of Edinburgh Ostrikov K., Neyts E C., and Meyyappan M (2013), "Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids", Advances in Physics 62(2), pp 113-224 Ozel T., Hernandez-Martinez P L., Mutlugun E., Akin O., Nizamoglu S., Ozel I O., Zhang Q., Xiong Q., and Demir H V (2013), "Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons", Nano Lett 13(7), pp 3065-72 Parchur A K., Sharma G., Jagtap J M., Gogineni V R., LaViolette P S., Flister M J., White S B., and Joshi A (2018), "Vascular Interventional Radiology-Guided Photothermal Therapy of Colorectal Cancer Liver Metastasis with Theranostic Gold Nanorods", ACS Nano 12(7), pp 65976611 Parsons M., Vojnovic B., and Ameer-Beg S (2004), "Imaging protein–protein interactions in cell motility using fluorescence resonance energy transfer (FRET)", Biochemical Society Transactions 32(3), pp 431-433 Pattani Varun P and Tunnell James W (2012), "Nanoparticle-mediated photothermal therapy: A comparative study of heating for different particle types", Lasers in Surgery and Medicine 44(8), pp 675-684 Pérez-Campaña Carlos, Gómez-Vallejo Vanessa, Puigivila Maria, Martín Abraham, Calvo-Fernández Teresa, Moya Sergio E., Ziolo Ronald F., Reese 105 120 121 122 123 124 125 126 127 128 129 130 131 132 Torsten, and Llop Jordi (2013), "Biodistribution of different sized nanoparticles assessed by positron emission tomography: A general strategy for direct activation of metal oxide particles", ACS Nano 7(4), pp 3498-3505 Perrin Jean (1912), "The Brownian Movement and the Size of Molecules", Chemical News Persson B and Lang N (1982), "Electron-hole-pair quenching of excited states near a metal", Physical Review B 26(10), pp 5409-5415 Poon Wilson, Zhang Xuan, Bekah Devesh, Teodoro Jose G., and Nadeau Jay L (2015), "Targeting B16 tumors in vivo with peptide-conjugated gold nanoparticles", Nanotechnology 26(28), pp 285101-285112 Popovtzer Aron, Mizrachi Aviram, Motiei Menachem, Bragilovski Dimitri, Lubimov Leon, Levi Mattan, Hilly Ohad, Ben-Aharon Irit, and Popovtzer Rachela (2016), "Actively targeted gold nanoparticles as novel radiosensitizer agents: An in vivo head and neck cancer model", Nanoscale 8(5), pp 26782685 Richmonds Carolyn and Sankaran R Mohan (2008), "Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations", Applied Physics Letters 93(13) Riley R S and Day E S (2017), "Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment", Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(4) Saini S., Singh H., and Bagchi B (2006), "Fluorescence resonance energy transfer (FRET) in chemistry and biology: Non-Förster distance dependence of the FRET rate", J Chem Sci 118, pp 23-35 Schellenberger Eyk A., Bogdanov Alexei, Högemann Dagmar, Tait Jonathan, Weissleder Ralph, and Josephson Lee (2002), "Annexin V-CLIO: A nanoparticle for detecting apoptosis by MRI", Molecular Imaging 1(2), pp 102-107 Shen J., Zhu Y., Chen C., Yang X., and Li C (2011), "Facile preparation and upconversion luminescence of graphene quantum dots", Chem Commun (Camb) 47(9), pp 2580-2 Shilo M., Reuveni T., Motiei M., and Popovtzer R (2012), "Nanoparticles as Computed Tomography Contrast Agents: Current Status and Future Perspectives", Nanomedicine (London, U K.) 7(2), pp 257-257 Shukla Nisha, Nigra Michael M., and Ondeck Abigail D (2012), "One-Step Synthesis and Photoluminescence Evaluation of Cadmium-Containing Quantum Dots", Nano-Micro Letters 4(1), pp 52-56 Siegmund K D., Marjoram P., Woo Y J., Tavare S., and Shibata D (2009), "Inferring clonal expansion and cancer stem cell dynamics from DNA methylation patterns in colorectal cancers", Proc Natl Acad Sci U S A 106(12), pp 4828-33 Singh A K., Lu W., Senapati D., Khan S A., Fan Z., Senapati T., Demeritte T., Beqa L., and Ray P C (2011), "Long-range nanoparticle surface-energy- 106 133 134 135 136 137 138 139 140 141 142 143 transfer ruler for monitoring photothermal therapy response", Small 7(17), pp 2517-25 Sk Mahasin Alam, Ananthanarayanan Arundithi, Huang Lin, Lim Kok Hwa, and Chen Peng (2014), "Revealing the tunable photoluminescence properties of graphene quantum dots", J Mater Chem C 2(34), pp 6954-6960 Skrabalak Sara E., Chen Jingyi, Sun Yugang, Lu Xianmao, Au Leslie, Cobley Claire M., and Xia Younan (2008), "Gold nanocages: Synthesis, properties, and applications", Accounts of Chemical Research 41(12), pp 1587-1595 Stryer Lubert and Haugland Richard P., "Energy Transfer: A Spectroscopic Ruler", Proceedings of the National Academy of Sciences of the United States of America 58, pp 719-726 Su Shao, Fan Jinwei, Xue Bing, Yuwen Lihui, Liu Xingfen, Pan Dun, Fan Chunhai, and Wang Lianhui (2014), "DNA-conjugated quantum dot nanoprobe for high-sensitivity fluorescent detection of DNA and microRNA", ACS Applied Materials and Interfaces 6(2), pp 1152-1157 Sun Y P., Zhou B., Lin Y., Wang W., Fernando K A., Pathak P., Meziani M J., Harruff B A., Wang X., Wang H., Luo P G., Yang H., Kose M E., Chen B., Veca L M., and Xie S Y (2006), "Quantum-sized carbon dots for bright and colorful photoluminescence", J Am Chem Soc 128(24), pp 7756-7 Tang Zi Rong, Zhang Yanhui, and Xu Yi Jun (2012), "Tuning the optical property and photocatalytic performance of titanate nanotube toward selective oxidation of alcohols under ambient conditions", ACS Applied Materials and Interfaces 4(3), pp 1512-1520 Thakor Avnesh S and Gambhir Sanjiv S (2013), "Nanooncology : The Future of Cancer Diagnosis and Therapy", A: a cancer journal for clinicians 63(6), pp 395-418 Thakur Mukeshchand, Pandey Sunil, Mewada Ashmi, Patil Vaibhav, Khade Monika, Goshi Ekta, and Sharon Madhuri %J Journal of drug delivery (2014), "Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity" 2014 Tian Y and Tatsuma T (2004), "Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2", Chem Commun (Camb)(16), pp 1810-1 Tung Do Hoang, Thuong Tran Thi, Cong Nguyen Dinh, Liem Nguyen Thanh, Kha Nguyen Van, Manh Le Hong, Minh Pham Hong, Thuy Nguyen Thi Thu, Hoa Nguyen Minh, and Phu Nguyen Van (2018), "Facile Synthesis of Carbon Quantum Dots by Plasma-liquid Interaction Method", Communications in Physics 27(4), pp 343-348 Viet Ha Chu, Thi Nga Do, Ai Viet Nguyen, and Hong Nhung Tran (2015), "The local field dependent effect of the critical distance of energy transfer between nanoparticles", Optics Communications 353, pp 49-55 107 144 145 146 147 148 149 150 151 152 153 154 155 156 157 Vincent R and Carminati R (2010), "Magneto-optical control of förster energy transfer", AIP Conference Proceedings 1291, pp 93-96 Vo-Dinh Tuan (2018), "Shining Gold Nanostars: From Cancer Diagnostics to Photothermal Treatment and Immunotherapy", Journal of Immunological Sciences 2(1), pp 1-8 Wang Jing, Wang Cai-Feng, and Chen Su (2012), "Amphiphilic Egg-Derived Carbon Dots: Rapid Plasma Fabrication, Pyrolysis Process, and Multicolor Printing Patterns", Angewandte Chemie 124(37), pp 9431-9435 Wang Qi, Zhang Miao, Chen Chuncheng, Ma Wanhong, and Zhao Jincai (2010), "Photocatalytic aerobic oxidation of alcohols on TiO2: The acceleration effect of a brønsted acid", Angewandte Chemie - International Edition 49(43), pp 7976-7979 Wang Qinlong, Zheng Huzhi, Long Yijuan, Zhang Lingyan, Gao Mei, and Bai Wenjun (2011), "Microwave-hydrothermal synthesis of fluorescent carbon dots from graphite oxide", Carbon 49(9), pp 3134-3140 Wang Y., Kalytchuk S., Zhang Y., Shi H., Kershaw S V., and Rogach A L (2014), "Thickness-Dependent Full-Color Emission Tunability in a Flexible Carbon Dot Ionogel", J Phys Chem Lett 5(8), pp 1412-20 Wang Y., Li Y., Yan Y., Xu J., Guan B., Wang Q., Li J., and Yu J (2013), "Luminescent carbon dots in a new magnesium aluminophosphate zeolite", Chem Commun (Camb) 49(79), pp 9006-8 Wang Youfu, Dong Luhua, Xiong Rulin, and Hu Aiguo (2013), "Practical access to bandgap-like N-doped carbon dots with dual emission unzipped from PAN@PMMA core–shell nanoparticles", Journal of Materials Chemistry C 1(46) Wang Youfu and Hu Aiguo (2014), "Carbon quantum dots: synthesis, properties and applications", Journal of Materials Chemistry C 2(34) Wang Z., Lu Y., Yuan H., Ren Z., Xu C., and Chen J (2015), "Microplasmaassisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection", Nanoscale 7(48), pp 20743-8 Wen X., Yu P., Toh Y R., Ma X., and Tang J (2014), "On the upconversion fluorescence in carbon nanodots and graphene quantum dots", Chem Commun (Camb) 50(36), pp 4703-6 Wong Kim F., Bagchi Biman, and Rossky Peter J (2004), "Distance and orientation dependence of excitation transfer rates in conjugated systems: Beyond the f??rster theory", Journal of Physical Chemistry A 108(27), pp 5752-5763 Wu N (2018), "Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: a review", Nanoscale 10(6), pp 2679-2696 Xu Xiaoyou, Ray Robert, Gu Yunlong, Ploehn Harry J., Gearheart Latha, Raker Kyle, and Scrivens Walter A (2004), "Electrophoretic analysis and 108 158 159 160 161 162 163 164 165 166 167 168 purification of fluorescent single-walled carbon nanotube fragments", Journal of the American Chemical Society 126(40), pp 12736-12737 Yan F., Zou Y., Wang M., Mu X., Yang N., and Chen L (2014), "Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells", Sensors and Actuators, B: Chemical 192 Yan Rui, Wu Hao, Zheng Qing, Wang Junying, Huang Jianlin, Ding Kejian, Guo Quangui, and Wang Junzhong (2014), "Graphene quantum dots cut from graphene flakes: High electrocatalytic activity for oxygen reduction and low cytotoxicity", RSC Advances 4(44), pp 23097-23106 Yan T., Zhong X., Rider A E., Lu Y., Furman S A., and Ostrikov K K (2014), "Microplasma-chemical synthesis and tunable real-time plasmonic responses of alloyed Au(x)Ag(1-x) nanoparticles", Chem Commun (Camb) 50(24), pp 3144-7 Yao Cuiping, Zhang Luwei, Wang Jing, He Yulu, Xin Jing, Wang Sijia, Xu Hao, and Zhang Zhenxi (2016), "Gold Nanoparticle Mediated Phototherapy for Cancer", Journal of Nanomaterials 2016, pp 1-29 Yin D., Li X., Ma Y., and Liu Z (2017), "Targeted cancer imaging and photothermal therapy via monosaccharide-imprinted gold nanorods", Chem Commun (Camb) 53(50), pp 6716-6719 Youssef A M., Abdel-Aziz M S., and El-Sayed S M (2014), "Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials", Int J Biol Macromol 69, pp 185-91 Yun C S., Javier A., Jennings T., Fisher M., Hira S., Peterson S., Hopkins B., Reich N O., and Strouse G F (2005), "Nanometal surface energy transfer in optical rulers, breaking the FRET barrier", Journal of the American Chemical Society 127(9), pp 3115-3119 Zhang Y., Chu W., Foroushani A D., Wang H., Li D., Liu J., Barrow C J., Wang X., and Yang W (2014), "New Gold Nanostructures for Sensor Applications: A Review", Materials (Basel) 7(7), pp 5169-5201 Zhang Y., Kohler N., and Zhang M (2002), "Surface modification of superparamagnetic nagnetite nanoparticles and their intracellular uptake", Biomaterials 23(7), pp 1553-1561 Zhang Y., Qian J., Wang D., Wang Y., and He S (2013), "Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy", Angew Chem Int Ed Engl 52(4), pp 1148-51 Zhang Z., Chen Z., Cheng F., Zhang Y., and Chen L (2017), "Highly sensitive on-site detection of glucose in human urine with naked eye based on enzymatic-like reaction mediated etching of gold nanorods", Biosens Bioelectron 89(Pt 2), pp 932-936 109 169 170 171 172 173 174 175 176 177 178 179 Zhang Z., Wang J., Nie X., Wen T., Ji Y., Wu X., Zhao Y., and Chen C (2014), "Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods", J Am Chem Soc 136(20), pp 7317-26 Zhao Pengxiang, Li Na, and Astruc Didier (2013), "State of the art in gold nanoparticle synthesis", Coordination Chemistry Reviews 257(3-4), pp 638665 Zheng Binjie, Chen Yuanfu, Li Pingjian, Wang Zegao, Cao Bingqiang, Qi Fei, Liu Jinbo, Qiu Zhiwen, and Zhang Wanli (2017), "Ultrafast ammonia-driven, microwave-assisted synthesis of nitrogen-doped graphene quantum dots and their optical properties", Nanophotonics 6(1), pp 259-267 Zheng Liyan, Chi Yuwu, Dong Yongqing, Lin Jianpeng, and Wang Binbin (2009), "Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite", Journal of the American Chemical Society 131(13), pp 4564-4565 Zheng M., Xie Z., Qu D., Li D., Du P., Jing X., and Sun Z (2013), "On-offon fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect", ACS Appl Mater Interfaces 5(24), pp 13242-7 Zhou Nan, Zhu Shoujun, Maharjan Suraj, Hao Zeyu, Song Yubin, Zhao Xiaohuan, Jiang Yanfang, Yang Bai, and Lu Laijin (2014), "Elucidating the endocytosis, intracellular trafficking, and exocytosis of carbon dots in neural cells", RSC Advances 4(107), pp 62086-62095 Zhu Shoujun, Song Yubin, Zhao Xiaohuan, Shao Jieren, Zhang Junhu, and Yang Bai (2015), "The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective", Nano Research 8(2), pp 355-381 Chen J., Wang D., Xi J., Au L., Siekkinen A., Warsen A., Li Z Y., Zhang H., Xia Y., and Li X (2007), "Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells", Nano Lett 7(5), pp 1318-22 El-Sayed I H., Huang X., and El-Sayed M A (2005), "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer", Nano Lett 5(5), pp 829-34 Huang X., El-Sayed I H., Qian W., and El-Sayed M A (2006), "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods", J Am Chem Soc 128(6), pp 2115-20 Yang K., Feng L., Shi X., and Liu Z (2013), "Nano-graphene in biomedicine: theranostic applications", Chem Soc Rev 42(2), pp 530-47 110 ... CÁC ỨNG DỤNG MỚI CỦA VẬT LÝ TRONG Y HỌC HIỆN ĐẠI Chương trình b y mối liên hệ số đại lượng vật lý tác động sinh học, ứng dụng vật lý y học đại, số ứng dụng cơng nghệ nano chẩn đốn điều trị Trong. .. trình b y chi tiết chương Từ chúng tơi đề xuất thêm số sở vật lý cho ứng dụng lĩnh vực y sinh Mục tiêu luận án Cung cấp thêm số sở vật lý cho việc ứng dụng vật liệu nano y học đại, cụ thể: - X y dựng... phù hợp mơ hình, biện luận cho định hướng ứng dụng y sinh Qua việc phân tích đánh giá chọn đề tài Một số sở vật lý việc ứng dụng vật liệu nano y học đại để nghiên cứu Chúng tập trung giải ba

Ngày đăng: 13/07/2019, 15:01

Từ khóa liên quan

Mục lục

  • 1. Bia LA.pdf (p.1-2)

  • 2. Loi cam doan.pdf (p.3)

  • 3. Loi cam on.pdf (p.4)

  • Luan an M Hoa.pdf (p.5-114)

Tài liệu cùng người dùng

Tài liệu liên quan