Để phân tích hồi quy đạt kết quả cao, đề tài sẽ thực hiện thêm một bước kiểm định mối tương quan giữa biến độc lập và biến phụ thuộc thông qua hệ số tương quan
Pearson, bởi vì điều kiện để phân tích hồi quy là trước tiên các biến phải tương quan
với nhau. Hệ số tương quan Pearson sẽ giúp chúng ta thực hiện các thống kê cơ bản
như ước lượng điểm (kiểm định mức ý nghĩa), giải thích (sự ảnh hưởng của biến độc
lập đối với biến phụ thuộc), dự báo (thơng qua mơ hình hồi quy tuyến tính), ước lượng
độ tin cậy và tính hợp lý (validity).
Trong q trình phân tích mối tương quan, ta cần chú ý phân tích đến 2 giá trị: Hệ số tương quan Pearson (Pearson Correlation) càng lớn, tiến dần về 1 thì mối tương quan giữa biến độc lập và biến phụ thuộc càng chặt chẽ và ngược lại; Giá trị Sig. của kiểm định Pearson nếu bé hơn 0,05 thì ta có thể kết luận hai biến có tương quan với
nhau và ngược lại, nếu Sig. lớn hơn 0,05 thì khơng có sự tương quan giữa hai biến.
Vì một trong những điều kiện cần để phân tích hồi quy là biến độc lập phải có
tương quan với biến phụ thuộc, nên nếu ở bước phân tích tương quan này biến độc lập
khơng có tương quan với biến phụ thuộc thì ta loại biến độc lập này ra khỏi phân tích
hồi quy.
Bảng 2. 10. Kết quả phân tích tương quan Pearson HL
Tương quanPearson Sig. (2-tailed) N
HLCV 1 0,000 150 LANHDAO 0,337 0,000 150 BCCV 0,376 0,000 150 DIEUKIEN 0,100 0,000 150 DONGNGHIEP 0,368 0,000 150 LUONG 0,506 0,000 150 PHUCLOI 0,457 0,000 150
Dựa vào bảng kết quả kiểm định ở trên, ta thấy giá trị Sig. (2-tailed) của các nhân tố đều bé hơn mức ý nghĩa α = 0,05, vì vậy ta có thể kết luận các biến độc lập có sự tương quan với biến phụ thuộc. Đồng thời, ta thấy mức độ tương quan giữa các biến
độc lập và biến phụ thuộc cũng khá mạnh khi có hệ số tương quan đều lớn hơn và gần
bằng 0,5. Điều đó cho thấy rằng các biến độc lập ở trên có thể giải thích cho biến phụ thuộc “Hài lịng cơng việc” theo hệ số tương quan dương.