Cách giải Khối đa diện đều là một khối đa diện lồi có hai tính chất sau đây: - Các mặt là những đa giác đều và có cùng số cạnhA. Phương pháp: Khối đa diện đều mà mỗi mặt là đa giác n c
Trang 150 BÀI TẬP TRẮC NGHIỆM LÝ THUYẾT KHỐI ĐA DIỆN –
CÓ LỜI GIẢI CHI TIẾT MỨC ĐỘ 1: NHẬN BIẾT - ĐỀ SỐ 1 CHUYÊN ĐỀ: HÌNH HỌC KHÔNG GIAN Câu 1: Hình đa diện nào sau đây có tâm đối xứng?
A Hình hộp chữ nhật B Hình tứ diện đều
C Hình chóp tứ giác đều D Hình lăng trụ tam giác
Câu 2: Chọn khẳng định đúng trong các khẳng định sau.
A Khối chóp tứ giác S.ABCD được phân chia thành hai khối tứ diện S.ABD và S.ACD
B Khối chóp tứ giác S.ABCD được phân chia thành ba khối tứ diện S.ABC, S.ABD và S.ACD
C Khối chóp tứ giác S.ABCD được phân chia thành hai khối tứ diện C.SAB và C.SAD
D Khối chóp tứ giác S.ABCD không thể phân chia thành các khối tứ diện.
Câu 3: Tổng số mặt, số cạnh và số đỉnh của một hình lập phương là:
Câu 4: Cho khối lăng trụ tam giác ABC.A'B'C', M là trung điểm của AA'.Cắt khối lăng trụ trên bằng hai mặt
phẳng (MBC) và (MB'C') ta được:
A Ba khối tứ diện B Ba khối chóp C Bốn khối chóp D Bốn khối tứ diện.
Câu 5: Cho khối đa diện đều giới hạn bởi hình đa diện (H), khẳng định nào sau đây là sai?
A Các mặt của (H) là những đa giác đều có cùng số cạnh
B Mỗi cạnh của một đa giác của (H) là cạnh chung của nhiều hơn hai đa giác
C Khối da diện đều (H) là một khối đa diện lồi
D Mỗi đỉnh của (H) là đỉnh chung của cùng một số cạnh.
Câu 6: Cho 3 khối hình 1, hình 2, hình 3 Khẳng định nào sau đây là khẳng định đúng?
A Hình 2 không phải là khối đa diện, hình 3 không phải là khối da diện lồi
B Hình 1 và hình 3 là các khối đa diện lồi
C Hình 3 là khối đa diện lồi, hình 1 không phải là khối đa diện lồi
D Cả 3 hình là các khối đa diện.
Câu 7: Khối bát diện đều là một khối đa diện lồi loại:
Trang 2Câu 8: Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 9: Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 10: Số mặt phẳng đối xứng của khối tứ diện đều là
Câu 11: Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất bao nhiêu mặt?
Câu 12: Mỗi đỉnh của một hình đa diện là đỉnh chung của ít nhất:
Câu 13: Khối tám mặt đều thuộc loại:
Câu 14: Tìm số mặt của hình đa diện ở hình vẽ bên:
Câu 15: Hình lăng trụ tam giác đều có bao nhiêu mặt đối xứng?
Câu 16: Số cạnh của các hình đa diện luôn luôn:
A Lớn hơn hoặc bằng 6 B Lớn hơn 6
Câu 17: Có tất cả bao nhiêu loại khối đa diện đều?
Câu 18: Số cạnh của khối bát diện đều là:
Câu 19: Số đỉnh của khối bát diện đều là
Câu 20: Mỗi hình sau gồm một số hữu hạn đa giác phẳng, tìm hình không là hình đa diện.
Trang 3A Hình 2 B Hình 4 C Hình 1 D Hình 3.
Câu 21: Trong các khẳng định sau khẳng định nào sai?
A Hình chóp đều là hình chóp có đáy là đa giác đều, các cạnh bên bằng nhau
B Hình chóp tam giác đều là tứ diện đều
C Hình chóp đều là hình chóp có đáy là đa giác đều, chân đường cao hạ từ đỉnh xuống đáy trùng với
tâm đường tròn ngoại tiếp đa giác đáy
D Tứ diện đều là hình chóp đều
Câu 22: Hình lập phương thuộc loại khối đa diện đều nào?
Câu 23: Gọi a, b, c lần lượt là số đỉnh, số cạnh, số mặt của một tứ diện đều Tính giá trị của S a 2b3c
Câu 24: Hình đa diện sau có bao nhiêu mặt?
Câu 25: Trong các khẳng định sau, khẳng định nào sai?
A Hình chóp đều có các cạnh bên tạo với mặt phẳng đáy các góc bằng nhau
B Hình chóp đều có tất cả các cạnh bằng nhau.
C Một hình chóp có đáy là một đa giác đều và có chân đường cao trùng với tâm của đa giác đáy thì
đó là hình chóp đều
D Hình chóp đều có các mặt bên là các tam giác cân bằng nhau.
Câu 26: Khối đa diện đều có 12 mặt thì số cạnh là:
Trang 4A 60 B 30 C 12 D 24
Câu 27: Trong các loại khối đa diện đều sau, tìm khối đa diện có số cạnh gấp đôi số đỉnh
A Khối hai mươi mặt đều B Khối lập phương
C Khối mười hai mặt đều D Khối bát diện đều.
Câu 28: Hình đa diện trong hình bên có bao nhiêu mặt và bao nhiêu cạnh?
A 11 mặt, 20 cạnh B 10 mặt, 15 cạnh
C 9 mặt, 18 cạnh D 12 mặt, 25 cạnh
Câu 29: Khối bát diện đều là khối đa diện đều loại nào?
Câu 30: Trong các hình đa diện sau đây, hình đa diện nào không nội tiếp được một mặt cầu?
C Hình chóp ngũ giác đều D Hình chóp có đáy là hình thang vuông.
Câu 31: Cho hình chóp S.ABCD có đáy ABCDlà hình vuông Biết hai mặt phẳng (SAB) và (SAD) cùng
vuông góc với đáy Hình chóp này có bao nhiêu mặt phẳng đối xứng?
Câu 32: Hình đa diện bên có bao nhiêu cạnh?
Câu 33: Hình bên có bao nhiêu mặt?
Trang 5Câu 34: Hình bát diện đều có bao nhiêu cạnh?
Câu 35: Hình nào dưới đây không phải hình đa diện?
Câu 36: Hình đa diện nào dưới đây không có tâm đối xứng?
A Hình lăng trụ tứ giác đều B Hình bát diện đều
C Hình tứ diện đều D Hình lập phương.
Câu 37: Trong các mệnh đề sau, mệnh đề nào đúng?
A Tồn tại một hình đa diện có số cạnh bằng số đỉnh
B Tồn tại một hình đa diện có số cạnh và số mặt bằng nhau
C Số đỉnh và số mặt củ hình đa diện luôn bằng nhau
D Tồn tại một hình đa diện có số đỉnh và số mặt bằng nhau.
Câu 38: Khối lập phương là khối đa diện đều loại nào sau đây?
Câu 39: Số mặt phẳng đối xứng của hình bát diện đều là:
Câu 40: Trong các mệnh đề sau, mệnh đề nào đúng?
Số các cạnh của hình đa diện luôn luôn …
A lớn hơn hoặc bằng 6 B lớn hơn 7
Câu 41: Khối bát diện đều là khối đa diện đều loại
Câu 42: Tìm số cạnh ít nhất của hình đa diện có 5 mặt
Câu 43: Hình nào dưới đây không phải hình đa diện?
Trang 6A Hình 1 B Hình 2 C Hình 3 D Hình 4.
Câu 44: Khối mười hai mặt đều có bao nhiêu cạnh?
A 30 cạnh B 12 cạnh
C 16 cạnh D 20 cạnh.
Câu 45: Hình hộp chữ nhật có ba kích thước đôi một khác nhau có bao nhiêu mặt phẳng đối xứng?
A 6 mặt phẳng B 3 mặt phẳng C 9 mặt phẳng D 4 mặt phẳng.
Câu 46: Khối đa diện sau có bao nhiêu mặt?
Câu 47: Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất bao nhiêu mặt?
Câu 48: Một hình đa diện có các mặt là các tam giác thì số mặt M và số cạnh C của đa diện đó thỏa mãn hệ
thức nào dưới đây?
Câu 49: Hình tứ diện đều có bao nhiêu tâm đối xứng?
Câu 50: Hình lăng trụ có 2018 đỉnh Hỏi lăng trụ đó có bao nhiêu mặt bên?
Trang 7HƯỚNG DẪN GIẢI CHI TIẾT
Câu 1: Chọn A.
Cách giải:
Mọi hình hộp chữ nhật đều có tâm đối xứng
Mọi hình chóp đều không có tâm đối xứng (trong đó có hình tứ diện đều)
Hình lăng trụ tam giác không có tâm đối xứng
Câu 2: Chọn C.
Phương pháp:
Vẽ hình và quan sát, chọn đáp án
Cách giải:
Quan sát hình vẽ bên ta thấy khối chóp S.ABCD được chia thành hai khối tứ
diện S.ABC và S.ADC hay hai khối tứ diện C.SAB và C.SAD
Câu 3: Chọn A.
Phương pháp:
Hình lập phương là hình có 6 mặt đều là các hình vuông
Cách giải:
Hình lập phương có 6 mặt, 8 đỉnh và 12 cạnh nên tổng số cạnh, mặt đỉnh là: 6 + 8 + 12 = 26
Câu 4: Chọn B.
Phương pháp:
Phân chia khối đa diện
Cách giải
Cắt khối lăng trụ bởi hai mặt phẳng (MBC) và (MB’C’) ta được ba
khối chóp M.ABC; M.A’B’C’; M.BCC’B’
Câu 5: Chọn B.
Phương pháp:
Sử dụng định nghĩa khối đa diện đều
Trang 8Cách giải
Khối đa diện đều là một khối đa diện lồi có hai tính chất sau đây:
- Các mặt là những đa giác đều và có cùng số cạnh
- Mỗi đỉnh là đỉnh chung của cùng một số cạnh
Từ định nghĩa khối đa diện đều ta thấy A, C, D đúng Vậy B sai
Câu 6: Chọn C.
Phương pháp:
Sử dụng định nghĩa về khối đa diện và khối đa diện lồi
Khối đa diện giới hạn bởi hình (H) gồm một số hữu hạn đa giác phẳng thỏa mãn hai điều kiện:
1) Hai đa giác bất kì không có điểm chung hoặc có 1 đỉnh chung, hoặc có 1 cạnh chung
2) Mỗi cạnh của một đa giác là cạnh chung của đúng hai đa giác
Khối đa diện lồi: Nếu hai điểm A, B thuộc đa diện lồi thì mọi điểm M AB cũng thuộc đa diện đó.
Cách giải:
A sai vì Hình 3 là một khối đa diện lồi
B sai vì Hình 1 không phải là một khối đa diện lồi
D sai vì Hình 2 không phải là một khối đa diện
Câu 7: Chọn C.
Phương pháp:
Khối đa diện đều mà mỗi mặt là đa giác n cạnh và mỗi đỉnh là đỉnh chung của p cạnh được gọi là khối đa diện đều loại {n; p}.
Cách giải
Khối bát diện đều là khối đa diện đều thuộc loại {3;4}
Câu 8: Chọn D.
Phương pháp:
Phương pháp giải Lấy G, H, I, J lần lượt là trung điểm AB, BC, CD, DA Sử dụng giả thiết để chứng minh Hình chóp S.ABCD có các mặt phẳng đối xứng là (SAC), (SBD), (SGI), (SHJ).
Cách giải:
Giả sử S.ABCD là hình chóp tứ giác đều Khi đó đáy ABCD là hình
vuông Ta có hình chiếu của đỉnh S trùng với tâm của đáy ABCD
Hình chóp S.ABCD có các mặt đối xứng là (SAC), (SBD), (SGI), (SHJ)
trong đó G, H, I, J lần lượt là trung điểm AB, BC, CD, DA
Câu 9: Chọn C.
Phương pháp:
Các hình chóp đều có đáy là đa giác đều n đỉnh thì có n mặt phẳng đối xứng
Cách giải:
Trang 9Hình chóp tứ giác đều có 4 mặt phẳng đối xứng.
Câu 10: Chọn D.
Phương pháp:
Vẽ hình và chỉ ra mặt phẳng đối xứng
Cách giải:
Số mặt phẳng đối xứng của tứ diện đều là 6 theo hình vẽ bên
Cụ thể mặt phẳng đối xứng đi qua một cạnh và trung điểm của cạnh đối của cạnh này
Câu 11: Chọn C.
Cách giải:
Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất 3 mặt
Câu 12: Chọn C.
Phương pháp:
Sử dụng định nghĩa khối đa diện
Cách giải:
Mỗi đỉnh của một khối đa diện là đỉnh chung của ít nhất 3 cạnh
Câu 13: Chọn C.
Phương pháp:
Khối đa diện đều có thể xác định bởi ký hiệu {p;q} trong đó:
p = số các cạnh của mỗi mặt (hoặc số các đỉnh của mỗi mặt)
q = số các mặt cùng đi qua một đỉnh (hoặc số các cạnh cùng đi qua một đỉnh)
Cách giải:
Khối bát diện đều là khối có dạng
Mỗi mặt có 3 đỉnh nên p = 3; mỗi đỉnh đều có 4 cạnh đi qua nên q = 4
Vậy khối tám mặt đều thuộc loại {3;4}
Câu 14: Chọn D.
Trang 10Phương pháp:
Quan sát hình vẽ và đếm
Cách giải:
Hình đa diện trên có 9 mặt
Câu 15: Chọn D.
Phương pháp:
Lăng trụ tam giác đều là lăng trụ đứng có đáy là tam giác đều
Cách giải:
Lăng trụ tam giác đều có 4 mặt phẳng đối xứng
Câu 16: Chọn A.
Phương pháp:
Lấy tứ diện làm đại diện để xét
Cách giải:
Dễ thấy số cạnh của hình đa diện luôn luôn lớn hơn hoặc bằng 6
Câu 17: Chọn B.
Phương pháp:
Sử dụng lý thuyết về khối đa diện đều (chỉ xét khối đa diện lồi)
Cách giải:
Có tất cả 5 khối đa diện lồi đều: tứ diện đều, khối lập phương, khối tám mặt đều, khối mười hai mặt đều, khối hai mươi mặt đều
Câu 18: Chọn D.
Phương pháp:
Dựa và lý thuyết về khối đa diện đều
Cách giải:
Khối bát diện đều có tất cả 12 cạnh (chú ý: có thể coi bát diện đều là gộp của hai khối chóp tứ giác đều có chung đáy)
Trang 11Câu 19: Chọn A.
Phương pháp:
Dựa vào lý thuyết về khối đa diện
Cách giải:
Khối bát diện đều có tất cả 6 đỉnh
Câu 20: Chọn B.
Phương pháp:
Khái niệm: Hình đa diện gồm một số hữu hạn đa giác phẳng thỏa mãn hai điều kiện:
a) Hai đa giác bất kì hoặc không có điểm chung, hoặc có một đỉnh chung, hoặc có một cạnh chung
b) Mỗi cạnh của một đa giác là cạnh chung của đúng hai đa giác
Hình đa diện chia không gian thành hai phần (phần bên trong và phần bên ngoài) Hình đa diện cùng với phần bên trong của nó gọi là khối đa diện
Cách giải:
Theo khái niệm hình đa diện ta chỉ thấy hình 4 không là hình đa diện
Câu 21: Chọn B.
Phương pháp:
Áp dụng các lý thuyết về hình chóp đều
Cách giải:
Tứ diện đều là hình chóp tam giác đều, chiều ngược lại chưa chắc đúng
Câu 22: Chọn C.
Phương pháp:
Mỗi khối đa diện xác định bởi kí hiệu {p;q}, trong đó p là số các cạnh mỗi mặt ( hoặc số các đỉnh mỗi mặt)
và q là số các mặt gặp nhau ở một đỉnh
Cách giải:
Do hình lập phương là hình có 6 mặt và mỗi mặt có 4 đỉnh Hơn nữa mỗi đỉnh là giao của ba mặt nên theo trên ta có p 4;q 3. Vậy hình lập phương là khối đa diện đều {4;3}
Câu 23: Chọn B.
Phương pháp:
Vẽ hình đếm số đỉnh, số cạnh, số mặt của 1 tứ diện đều và thay vào tính S
Cách giải:
Ta có tứ diện đều có:
Số đỉnh: a = 4
Số cạnh: b = 6
Số mặt: c = 4
Vậy S = a + 2b + 3c = 4 + 12 + 12 =28
Trang 12Câu 24: Chọn B.
Câu 25: Chọn B.
Phương pháp:
Hình chóp đều là hình chóp thỏa mãn 2 điều kiện sau:
+) Đáy là đa giác đều (tam giác đều, hình vuông…)
+) Chân đường cao của hình chóp trùng với tâm của đáy.
Từ đây ta suy ra hình chóp đều có các cạnh bên bằng nhau
Có các thuật ngữ sau:
+) Hình chóp tam giác đều là hình chóp đều có đáy là tam giác
+) Hình chóp tứ giác đều là hình chóp đều có đáy là tứ giác
Cách giải:
Đáp án B sai: Hình chóp đều có các cạnh bên bằng nhau và các cạnh đáy bằng nhau, cạnh bên và cạnh đáy
có thể khác nhau
Câu 26: Chọn B.
Phương pháp:
Sử dụng tính chất của khối 12 mặt đều
Cách giải:
Khối 12 mặt đều có 12 mặt, 20 đỉnh và 30 cạnh
Câu 27: Chọn D.
Phương pháp:
Sử dụng lý thuyết về khối đa diện đều
Cách giải:
+) Khối mười hai mặt đều có 20 đỉnh và 30 cạnh
+) Khối hai mươi mặt đều có 12 đỉnh và 30 cạnh
+) Khối lập phương có 8 đỉnh và 12 cạnh
+) Khối bát diện đều có 6 đỉnh và 12 cạnh
Câu 28: Chọn A.
Phương pháp:
Quan sát hình vẽ
Cách giải:
Hình vẽ trên có 11 mặt và 20 cạnh
Câu 29: Chọn C.
Phương pháp:
Khối đa diện đều mà mỗi mặt là đa giác có n cạnh và mỗi đinh là đỉnh chung của p cạnh được gọi là khối đa diện đều loại {n;p}.
Trang 13Cách giải:
Khối bát diện đều thuộc loại {3;4}
Câu 30: Chọn D.
Phương pháp:
Ta có nhận xét sau: Điều kiện cần và đủ để một hình chóp có mặt cầu ngoại tiếp là đáy của hình chóp có đường tròn ngoại tiếp
Cách giải:
+) Hình tứ diện có đáy là tam giác và tam giác luôn có đường tròn ngoại tiếp
+) Chóp ngũ giác đều có đáy là ngũ giác đều có đường tròn ngoại tiếp
+) Hình hộp chữ nhật có đáy là hình chữ nhật có tâm đường tròn ngoại tiếp là giao hai đường chéo
+) Chóp có đáy là hình thang vuông thì hình thang vuông chưa chắc có đường tròn ngoại tiếp
Câu 31: Chọn B.
Phương pháp:
Mặt phẳng là mặt phẳng đối xứng của hình H khi mọi điểm thuộc hình H lấy đối xứng qua mặt phẳng
để thuộc hình H.
Cách giải:
Biết hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy nên
SA ABCD
Ta thấy khối chóp S.ABCD có một mặt phẳng đối xứng là (SAC)
Câu 32: Chọn C.
Phương pháp:
Quan sát hình vẽ và đếm số cạnh của hình
Cách giải:
Từ hình vẽ ta thấy hình đa diện bên có 15 cạnh
Trang 14Câu 33: Chọn C.
Phương pháp:
Quan sát hình vẽ và đếm số mặt của hình
Cách giải:
Quan sát hình vẽ ta thấy đa diện đó có 9 mặt
Có thể nhận xét hình đa diện đó là hình đa diện được ghép bởi một lăng trụ tam giác và một hình hộp có chung một mặt bên
+ Hình lăng trụ tam giác có 5 mặt và hình hộp có 6 mặt nhưng khi ghép lại ta bỏ đi mặt chung của cả hai hình nên chỉ có 5 + 6 – 2 = 9 mặt
Câu 34: Chọn D.
Cách giải:
Hình bát diện đều có tất cả 12 cạnh
Câu 35: Chọn C.
Phương pháp:
Khái niệm: Hình đa diện (gọi tắt là đa diện) (H) là hình được tạo bởi một số hữu hạn các đa giác thỏa mãn hai điều kiện:
1) Hai đa giác phân biệt chỉ có thể hoặc không giao nhau, hoặc chỉ có một đỉnh chung, hoặc chỉ có một cạnh chung
2) Mỗi cạnh của đa giác nào cũng là cạnh chung của đúng hai đa giác
Cách giải:
Hình 3 vi phạm điều kiện 2) : Do trong Hình 3, tồn tại 1 cạnh là cạnh chung của 3 đa giác
Câu 36: Chọn C.
Phương pháp:
Vẽ hình xác định tâm đối xứng
Cách giải:
Hình tứ diện đều không có tâm đối xứng
Câu 37: Chọn D.
Trang 15Phương pháp:
Xét một vài hình đa diện thường gặp để thấy tính đúng sai
Cách giải:
Hình lập phương có số mặt là 6 và số đỉnh là 4
Tứ diện có số đỉnh và số mặt bằng nhau, và bằng 4
Câu 38: Chọn A.
Phương pháp:
Khối đa diện đều thuộc loại {n;p} là khối đa diện đều mà mỗi mặt của đa diện đều là tứ giác đều n cạnh, mỗi đỉnh của đa diện đều là đỉnh chung của p cạnh.
Cách giải:
Dựa vào lí thuyết về khối đa diện đều ta có khối lập phương thuộc loại \[\left\{ {4;3} \right\}\]
Câu 39: Chọn D.
Cách giải:
Câu 40: Chọn A.
Phương pháp:
Xét một khối đa diện bất kỳ để thấy tính đúng – sai của mệnh đề
Cách giải:
Xét hình tứ diện có 6 cạnh nên số các cạnh của hình đa diện luôn luôn lớn hơn hoặc bằng 6
Câu 41: Chọn D.
Phương pháp:
Sử dụng lý thuyết của khối đa diện đều
Cách giải:
Khối bát diện đều là khối đa diện loại {3;4}
Câu 42: Chọn D.
Phương pháp:
Dựa vào lý thuyết về khối đa diện
Cách giải:
Mỗi mặt của đa diện có ít nhất 3 cạnh (khi mặt là tam giác) và mỗi cạnh của đa diện là cạnh chung của 2 mặt Khi đó, một đa diện n mặt có ít nhất 3 cạnh Với Số cạnh
2
n
5
3
Vậy khối đa diện cần tìm có ít nhất 8 cạnh
Câu 43: Chọn C.
Phương pháp:
Dựa vào lý thuyết của hình đa diện
Cách giải: