ĐỀ MẪU CÓ ĐÁP ÔN TẬP KIẾN THỨC TOÁN 12 Thời gian làm bài 40 phút (Không kể thời gian giao đề) Họ tên thí sinh Số báo danh Mã Đề 006 Câu 1 Cho đồ thị hàm số như hình vẽ là một hình chữ nhật thay đổi sa[.]
ĐỀ MẪU CĨ ĐÁP ƠN TẬP KIẾN THỨC TỐN 12 Thời gian làm bài: 40 phút (Không kể thời gian giao đề) - Họ tên thí sinh: Số báo danh: Mã Đề: 006 - x2 Câu Cho đồ thị hàm số y = e hình vẽ ABCD hình chữ nhật thay đổi cho B C thuộc đồ thị hàm số cho, A D thuộc trục hoành Giá trị lớn diện tích hình chữ nhật ABCD e A Đáp án đúng: D B e C e D e Giải thích chi tiết: Hàm số y = e- x ( C x;e- x hàm số chẵn nên đồ thị hàm số nhận trục Oy làm trục đối xứng Giả sử ) với x > ìï D ( x;0) ïï í ïï B - x;e- x Suy ïỵ ( ) Diện tích hình chữ nhật ABCD Câu Tính thể tích khối chóp có chiều cao A C Đáp án đúng: B diện tích đáy B D 4;3 Khẳng định sau SAI? Câu Cho khối đa diện loại A Mỗi đỉnh đỉnh chung cạnh B Mỗi mặt đa giác có cạnh C Mỗi đỉnh đỉnh chung cạnh D Số cạnh đa diện 12 Đáp án đúng: C A ( 1;1;1) B ( - 2; 2;3) C ( - 5; - 2; 2) Câu Trong khơng gian Oxyz , cho hình bình hành ABCD , biết , , Tọa độ D điểm ( 2;3; 4) ( - 2; - 3; 0) ( - 8; - 1; 4) ( - 2;3;0) A B C D Đáp án đúng: B Câu Cho hình chóp tứ giác S.ABCD có cạnh đáy a , cạnh bên gấp lần cạnh đáy Tính thể tích khối chóp S.ABCD a3 A Đáp án đúng: C a3 B a 14 C a 14 D x3 x 3x I dx x x Câu Giá trị tích phân 15 ln 12 ln A B 15 12 ln C D ln Đáp án đúng: C 1 x 3 x x 1 dx x x dx x3 x 3x I dx x dx x x x x x x 2 2 2 2 Giải thích chi tiết: x2 3x ln x 2 15 ln 12 ln 2 Câu Cho hình lập phương có cạnh Chứng minh hai đường chéo hai mặt bên hai đường thẳng chéo Tìm khoảng cách hai đường thẳng chéo a A Đáp án đúng: A a B a D 2a C Giải thích chi tiết: Ta có: Ta có: Suy Vậy ba vectơ , , , nên không đồng phẳng hay chéo Câu Tìm tất giá trị thực tham số m để đồ thị hàm số điểm cực đại A m m C m Đáp án đúng: C y mx m2 x có hai điểm cực tiểu B m D m Câu Cho khối lăng trụ đứng ABC A ' B ' C ' có đáy tam giác cạnh 2a AA ' 3a Thể tích V khối lăng trụ cho 3 A V 3a B V 3 3a 3 C V 6 3a Đáp án đúng: B Câu 10 D V 2 3a Tìm số nghiệm nguyên dương bất phương trình A Đáp án đúng: B Giải thích chi tiết: Ta có 1 5 x2 x B C D 125 x2 x 1 1 5 5 x x 3 x 1 x 3 0 x 3 x 1; 2;3 Vì phương trình tìm nghiệm nguyên dương nên nghiệm Câu 11 Cho số thực dương a b c Khẳng định sau khẳng định đúng? a b a c A b b a b c b B b b a b a c C b b b c a c D b b Đáp án đúng: B Câu 12 Tổng số mặt,số cạnh số đỉnh hình lập phương A 16 B 26 C Đáp án đúng: B D 24 y f x A 1;1 , B 2; , C 3;9 Câu 13 Cho hàm số bậc ba có đồ thị qua điểm Các đường thẳng AB, AC , BC lại cắt đồ thị điểm M , N , P ( M khác A B , N khác A C , P khác B C Biết tổng hoành độ M , N , P 5, giá trị f A 18 B C D 18 Đáp án đúng: D f x a x 1 x x 3 x a 0 Giải thích chi tiết: Từ giả thuyết tốn ta giả sử ( ) Ta có: AB : y 3 x , AC : y 4 x , BC : y 5 x Khi đó: Hồnh độ M nghiệm phương trình: a xM 1 xM xM xM 3xM a xM 1 xM xM 3 xM 1 xM 0 a xM 3 0 xM 3 a a xN 1 x N xN 3 xN 4 xN N Hoành độ nghiệm phương trình: a xN 1 x N x N 3 xN 1 xN 0 a xN 0 xN 2 a Hồnh độ P nghiệm phương trình: a xP 1 xP xP 3 xP 5 xP a xP 1 xP xP 3 xP xP 3 0 a xP 1 0 xP 1 a xM xN xP 5 5 a 3 a Từ giả thuyết ta có; f x 3 x 1 x x 3 x Do đó: f 18 Câu 14 y f x Cho hàm số có bảng biến thiên sau: y f x Tổng số đường tiệm cận ngang tiệm cận đứng đồ thị hàm số A B C 12 Đáp án đúng: B Câu 15 Đồ thị hàm số có dạng đường cong hình bên? D A y=− x + x − C y=− x 3+3 x −1 Đáp án đúng: A Câu 16 B y=2 x − x −1 D y=x −3 x − Cho hình nón có bán kính đáy Biết cắt hình nón cho mặt phẳng qua trục, thiết diện thu tam giác Diện tích xung quanh hình nón cho A B Đáp án đúng: B Câu 17 Cho 0 180 Chọn khẳng định sai 2 A sin cos 1 C sin cos 1 Đáp án đúng: C C D B cos cos 180 0 D sin sin 180 Giải thích chi tiết: [ Mức độ 1] Cho 0 180 Chọn khẳng định sai sin sin 180 cos cos 180 0 A B 2 C sin cos 1 D sin cos 1 Lời giải 1 sin 30 cos30 1 2 Chọn 30 ta có Suy đáp án C đáp án sai Câu 18 Tích nghiệm phương trình A 10 Đáp án đúng: C B 1000 log x log 100 x 4 C 10 D 3 Câu 19 Tất giá trị tham số m để đồ thị hàm số y x 3mx 4m có hai điểm cực trị A B thỏa AB 20 : A m 2 B m 1 C m D m 1 Đáp án đúng: B Câu 20 Trên mặt phẳng tọa độ , tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện phần thực z -2 là: A y x B y 2 C y 2 x D x Đáp án đúng: D Giải thích chi tiết: Trên mặt phẳng tọa độ , tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện phần thực z -2 là: A x B y 2 C y 2 x D y x Hướng dẫn giải Câu 21 Cho hình lăng trụ tứ giác có cạnh đáy a , cạnh bên a Thể tích khối lăng trụ 2a A 2a B C a D 2a Đáp án đúng: D Giải thích chi tiết: Cho hình lăng trụ tứ giác có cạnh đáy a , cạnh bên a Thể tích khối lăng trụ 2a A B a 2a D C 2a Lời giải Lăng trụ cho lăng trụ tứ giác nên đáy hình vng cạnh a Cạnh bên vng góc với mặt đáy Diện tích đáy hình lăng trụ B a 2a Vậy thể tích khối lăng trụ cho V B.h 2a a 2a Câu 22 Một bồn chứa xăng có dạng hình trụ, chiều cao m , bán kính đáy 0,5 m đặt nằm ngang mặt sàn phẳng Hỏi chiều cao xăng bồn 0, 25 m thể tích xăng bồn (kết làm tròn đến hàng phần trăm)? A 392, 70 lít C 1570,80 lít B 433, 01 lít D 307, 09 lít Đáp án đúng: D Giải thích chi tiết: Nhận xét: Thể tích xăng tích chiều cao bồn (bằng m ) diện tích phần hình trịn đáy, mà cụ thể hình viên phân Ở đây, chiều cao h xăng 0, 25 m , xăng dâng lên chưa nửa bồn Từ ta thấy diện tích hình viên phân hiệu diện tích hình quạt hình tam giác tương ứng hình h R R.cos R cos 2 Gọi số đo cung hình quạt , ta có: 0, 25 0,5 cos 120 2 Suy ra: Ta tìm diện tích hình viên phân: R sin 3 R m 360 1 3 V Svp 307, 09 2 Thể tích xăng bồn là: (lít) Svp S quạt S z 3i z2 3i , z3 m 2i Tập giá trị tham số Câu 23 Cho số phức , nhỏ số phức cho ; 5; C A 5; B 5; m để số phức z3 có mơđun 5; D Đáp án đúng: C Giải thích chi tiết: ☑ Ta có: Ta có: ☑ Ta có: Để số phức z1 3 z2 10 , , z3 m z3 có mơđun nhỏ số phức cho m2 m Câu 24 Một khối chóp có chiều cao 5dm, diện tích đáy 12dm Thể tích khối chóp cho bao nhiêu? 3 3 A 15dm B 30dm C 60dm D 20dm Đáp án đúng: D Câu 25 Đồ thị hàm số có dạng đường cong hình bên? A y x x C y x x B y x x D y x x Đáp án đúng: C Giải thích chi tiết: Dựa vào hình dạng đồ thị cho ta có đồ thị đồ thị hàm số bậc trùng phương có a , b trái dấu Loại A, B Lại có nhánh cuối đồ thị hướng lên trên, suy hệ số a Chọn D Câu 26 Cho hình phẳng giới hạn đường tích khối trịn xoay tạo thành bằng: V 3 A V 3 C y tan x, y 0, x 0, x V B V D quay xung quanh trục Ox Thể 3 3 Đáp án đúng: C y tan x, y 0, x 0, x Giải thích chi tiết: Cho hình phẳng giới hạn đường Ox Thể tích khối trịn xoay tạo thành bằng: V V V B C 3 A quay xung quanh trục V 3 D Hướng dẫn giải V tan xdx 3 Theo cơng thức ta tích khối trịn xoay cần tính là: Câu 27 Thể tích khối cầu bán kính 4a A C Đáp án đúng: C B D A 0;1; B 2; 2;1 C 2;0;1 P : Câu 28 Trong không gian Oxyz cho ba điểm , ; mặt phẳng x y z 0 Gọi M a; b; c điểm thuộc P cho MA MB MC , giá trị a b c A 62 B 63 C 39 D 38 Đáp án đúng: A A 0;1; B 2; 2;1 C 2;0;1 P : Giải thích chi tiết: Trong khơng gian Oxyz cho ba điểm , ; mặt phẳng x y z 0 Gọi M a; b; c điểm thuộc P cho MA MB MC , giá trị a b c A 62 B 38 C 39 D 63 Lời giải M x; y;3 x y P Ta có: x y 1 z x y z 1 MA2 MB 2 2 2 2 MB MC x y z 1 x y z 1 4 x y z 4 8 x y 10 x 2 x y x y y 3 M 2;3; Vậy a b c 62 Câu 29 Cho hàm số y f ( x) có bảng biến thiên Hỏi đồ thị hàm số cho có đường tiệm cận? A B C D Đáp án đúng: C Câu 30 Cho với a , b P log a b 16 log b a Tìm giá trị nhỏ P A Pmin 24 B Pmin 12 C Pmin 8 D Pmin 16 Đáp án đúng: B Câu 31 Thể tích khối trịn xoay cho hình phẳng giới hạn parapol (P): y x đường thẳng d: y 2 x quay xung quanh trục Ox bằng: 2 A 4 x dx x dx 0 B (2 x x ) dx ( x x) dx C Đáp án đúng: A D 4 x dx x dx 0 Giải thích chi tiết: Thể tích khối trịn xoay cho hình phẳng giới hạn parapol (P): y x đường thẳng d: y 2 x quay xung quanh trục Ox bằng: A C (2 x x ) dx B ( x x) dx 4 x dx x dx 0 D 4 x dx x dx 0 Lời giải x 0 x 2 x x 2 Xét phương trình hồnh độ giao điểm hai đồ thị: 2 2 VOx (2 x ) dx ( x ) dx 4 x dx x 4dx Ta có: Câu 32 Cho H 0 0 2 hình phẳng giới hạn parabol y 3x , cung trịn có phương trình y x (với x 2 ) trục hồnh (phần tơ đậm hình vẽ) Diện tích H 4 A 2 B 4 C 4 12 D Đáp án đúng: C Giải thích chi tiết: Phương trình hồnh độ giao điểm parabol cung tròn ta với x 2 2 Ta có diện tích S 3x dx 1 3x x x 1 3 x dx x3 x dx x dx 3 1 x 2sin t dx 2 cos tdt ; x 1 t ; x 2 t Đặt: 10 4 S t sin 2t Câu 33 Tích nghiệm phương trình 630 A 125 B 625 log x 125 x log 225 x 1 C 630 Đáp án đúng: D Câu 34 Đặt log a , log b Hãy biểu diễn log 25 12 theo a b ab ab A B 2ab C Đáp án đúng: A Câu 35 Cho hàm số bậc ba Phương trình A f x f x D 125 D a b có đồ thị sau: có nghiệm thực? B C D Đáp án đúng: A HẾT - 11