6. Kết cấu của luận văn
2.5.3.4. Phân tích hồi quy
a. Định nghĩa
Phân tích hồi quy là nghiên cứu sự phụ thuộc của một biến (biến phụ thuộc hay biến được giải thích) vào một hay nhiều biến khác (biến độc lập hay biến giải thích) với ý tưởng cơ bản là ước lượng hay dự đoán giá trị trung bình của biến phụ thuộc trên cơ sở đã biết của biến độc lập.
b. Các giả định khi xây dựng mô hình hồi quy
Mô hình hồi quy có dạng:
Yi = B0+ B1 X1i+ B2 X2i+…+ Bn Xni + ei Các giả định quan trọng khi phân tích hồi quy tuyến tính
- Giả thiết 1: Giả định liên hệ tuyến tính.
- Giả thiết 2: Phương sai có điều kiện không đổi của các phần dư. - Giả thiết 3: Không có sự tương quan giữa các phần dư.
- Giả thiết 4: Không xảy ra hiện tượng đa cộng tuyến. - Giả thiết 5: Giả thiết về phân phối chuẩn của phần dư.
c. Xây dựng mô hình hồi quy
Các bước xây dựng mô hình:
Bước 1: Xem xét ma trận hệ số tương quan
Để xem xét mối quan hệ giữa biến phụ thuộc và các biến độc lập thông qua xây dựng ma trận tương quan. Đồng thời ma trận tương quan là công cụ xem xét mối quan hệ giữa các biến độc lập với nhau nếu các biến này có tương quan chặt thì nguy cơ xảy ra hiện tượng đa cộng tuyến cao dẫn đến việc vi phạm giả định của mô hình.
Bước 2: Đánh giá độ phù hợp của mô hình
Thông qua hệ số R2ta đánh giá độ phù hợp của mô hình xem mô hình trên giải thích bao nhiêu % sự biến thiên của biến phụ thuộc.
TSS
R2 =
ESS Trong đó:
ESS: tổng bình phương tất cả các sai lệch giữa giá trị dự đoán của Yi và giá trị trung bình của chúng.
TSS: tổng bình phương sai lệch giữa giá trị Yi và giá trị trung bình của chúng. Khi đưa càng nhiều biến vào mô hình thì hệ số này càng cao. Tuy nhiên, R2 ở hồi quy bội không phản ánh đúng sự phù hợp của mô hình như trong mô hình hồi quy đơn. Lúc này, ta phải sử dụng R2 điều chỉnh để đánh giá sự phù hợp của mô hình.
Bước 3: Kiểm định sự phù hợp của mô hình
Nếu giả thiết này bị bác bỏ thì ta có thể kết luận mô hình ta xây dựng phù hợp với tập dữ liệu.
Bước 4: Xác định tầm quan trọng của các biến
Ý tưởng đánh giá tầm quan trọng tương đối của các biến độc lập trong mô hình thông qua xem xét mức độ tăng của R2 khi một biến giải thích được đưa thêm vào mô hình. Nếu mức độ thay đổi này mà lớn thì chứng tỏ biến này cung cấp thông tin độc nhất về sự phụ thuộc mà các biến khác trong phương trình không có được. Ta đánh giá tầm quan trọng của một biến thông qua hai hệ số:
Hệ số tương quan từng phần: căn bậc hai của R2 change. Thể hiện mối tương quan giữa biến Y và X mới đưa vào. Tuy nhiên, sự thay đổi của R2 không thể hiện tỉ lệ phần biến thiên mà một mình biến đó có thể giải thích. Lúc này, ta sử dụng hệ số tương quan riêng bằng căn bậc 2 của , với:
Bước 5: Lựa chọn biến cho mô hình
Đưa nhiều biến độc lập vào mô hình hồi quy không phải lúc nào cũng tốt vì những lý do sau (trừ khi chúng có tương quan chặt với biến phụ thuộc):
- Mức độ tăng R2 quan sát không hẳn phản ảnh mô hình hồi quy càng phù hợp hơn với tổng thể.
- Đưa vào các biến không thích đáng sẽ làm tăng sai số chuẩn của tất cả các ước lượng mà không cải thiện được khả năng dự đoán.
- Mô hình nhiều biến thì khó giải thích và khó hiểu hơn mô hình ít biến. Ta sử dụng SPSS để giải quyết vấn đề trên. Các thủ tục chọn biến trên SPSS: Phương pháp đưa vào dần, phương pháp loại trừ dần, phương pháp từng bước (là sự kết hợp của hai phương pháp loại trừ dần và đưa vào dần).
Bước 6: Dò tìm sự vi phạm các giả các giả thiết (đã nêu ở trên bằng các xử lý của
SPSS).
Ngoài ra, sử dụng phân tích chi bình phương một mẫu để tìm ra quy luật phân phối của mẫu và đánh giá độ tin cậy của thang đo thông qua hệ số Cronbach Alpha.
Nghiên cứu chính thức là nghiên cứu định lượng với kỹ thuật thu thập dữ liệu là phỏng vấn trực tiếp qua bộ câu hỏi bằng phương pháp lấy mẫu thuận tiện. Toàn bộ dữ liệu hồi đáp sẽ được xử lý làm sạch với sự hỗ trợ của phần mềm SPSS 16.0. Khởi đầu,
dữ liệu sẽ được mã hóa và làm sạch, loại bỏ những bảng câu hỏi không đạt yêu cầu, sau đó qua hai bước phân tích chính sau:
- Đánh giá độ tin cậy và giá trị thang đo
CHƯƠNG III: KẾT QUẢ NGHIÊN CỨU