Nghiên cứu sự hình thành của tạp chất này, một số thí nghiệm trong điều kiện hồn ngun tương tự được thực hiện, nhưng thay vì chờ lị nguội đến nhiệt độ phịng mới lấy sản phẩm thì ngay khi tắt lị và xả khí Ar để cân bằng áp suất, vùng kết tinh sản phẩm được lấy ngay ra khỏi ống hoàn nguyên và làm nguội nhanh trong dịng khí Ar. Kết quả thu được sản phẩm khơng xuất hiện tạp chất như trong Hình 4.26.b. Điều này chứng tỏ khi tắt lò và cân bằng áp suất, một lượng nhỏ hơi Mg vẫn tiếp tục khuếch tán bên trong viên phối liệu, sau đó thốt ra khỏi bề mặt phối liệu và di chuyển về vùng kết tinh. Khi này do bơm chân không đã ngừng hoạt động, khơng khí lọt vào trong ống hồn ngun đã oxi hóa hơi Mg tạo thành lớp bột MgO như mơ tả trong Hình 4.29. Đối với lớp tạp chất MgO màu xám, thực chất đây là lớp Mg kim loại kết tinh, nhưng do ở khu vực cuối vùng làm mát nên lớp Mg này mỏng mịn và bề mặt dễ bị oxi hóa tạo thành lớp oxit có màu xám trên bề mặt.
Hình 4.29. Sơ đồ quá trình hơi Mg bị oxi hóa khi tắt lị hồn ngun
Tuy nhiên do hình thành sau q trình hồn ngun và nhiệt độ kết tinh của MgO khác Mg nên như quan sát trong Hình 4.26.a, vùng tạp chất MgO nằm riêng biệt so với vùng kim loại Mg kết tinh, do vậy tạp chất này không ảnh hưởng nhiều đến chất lượng của Mg sản phẩm. Phân tích bằng phương pháp hóa học cổ điển mẫu sản phẩm trong Hình 4.26.b cho kết quả hàm lượng Mg đạt 99,15%, nằm trong phạm vi hàm lượng Mg của các mẫu Mg có xuất hiện lớp tạp chất bột trắng.
4.2.3. Ảnh hưởng của nhiệt độ hoàn nguyên
Từ xác định phạm vi các thông số thực nghiệm trong mục 3.1 và kết quả tính tốn nhiệt động học trong mục 4.1.2.2, các thông số nghiên cứu ảnh hưởng đến phản ứng hoàn nguyên bao gồm nhiệt độ hoàn nguyên từ 1050, 1100, 1150, 1200, 1250 đến
1300 oC; Tỷ lệ fero silic trong phối liệu gồm các giá trị 13, 17, 20, 25, 30 %. Kết quả nghiên cứu ảnh hưởng của nhiệt độ đến hiệu suất hồn ngun được thể hiện trong Bảng 4.4 và Hình 4.30.
Bảng 4.4. Ảnh hưởng của nhiệt độ và tỷ lệ fero silic đến hiệu suất hoàn nguyên
(Áp suất chân không 600 Pa, lực ép 60 MPa, thời gian hoàn nguyên 3 giờ)
TT Nguyên liệu (%) Nhiệt độ (oC) Khối lượng phối liệu (g) Khối lượng Mg (g) Hiệu suất hoàn nguyên (%) Hiệu suất sử dụng silic (%) Dolomit Fe-Si 1 87 13 1050 81 0,4 2,45 2,99 2 1100 86 5,7 33,94 41,47 3 1150 81 5,9 36,85 45,03 4 1200 81 8,8 55,52 67,84 5 1250 75 8,8 59,96 73,27 6 1300 80 9,5 60,35 73,74 7 83 17 1050 81 1,5 9,92 8,83 8 1100 85 7,8 49,02 43,62 9 1150 83 8,4 54,38 48,39 10 1200 83 10,8 69,44 61,80 11 1250 83 11,2 72,27 64,31 12 1300 80 11 73,78 65,66 13 80 20 1050 75 1,8 13,35 9,72 14 1100 78.5 7,5 53,16 38,70 15 1150 79 8,6 60,57 44,10 16 1200 86 11,7 75,70 55,11 17 1250 86 12 77,64 56,52 18 1300 82,8 11,7 78,63 57,24 19 75 25 1050 70 2,3 19,55 10,65 20 1100 68,6 7,5 65,06 35,43 21 1150 75,5 9,1 71,72 39,06 22 1200 80 10,9 81,08 44,16 23 1250 75,7 10,8 84,90 46,24 24 1300 70 10,1 85,86 46,76 25 70 30 1050 77 2,6 21,59 9,12 26 1100 64 5,9 58,95 24,90 27 1150 72 7,2 63,95 27,01 28 1200 78 9,0 73,79 31,16
29 1250 71 8,6 77,08 32,55
30 1300 75 9,1 77,59 32,77
Với kết quả tính tốn nhiệt động học tại áp suất chân khơng 600 Pa, nhiệt độ hồn nguyên tối thiểu để phản ứng xảy ra là nhỏ hơn 1043 oC, do vậy tại nhiệt độ 1050 oC phản ứng đã xảy ra tuy nhiên tốc độ phản ứng tại nhiệt độ này rất thấp, sau 3 giờ hoàn nguyên hiệu suất thu được trong các thí nghiệm đều thấp hơn 20 %. Khi tăng nhiệt độ, hiệu suất hoàn nguyên trong một thời gian nhất định tăng nhanh do tốc độ phản ứng tăng dẫn tới hiệu suất thu được tăng. Thời gian để phản ứng hoàn nguyên đạt đến trạng thái cân bằng có liên quan chặt chẽ với yếu tố chính là nhiệt độ hồn nguyên. Q trình hồn ngun dolomit là một phản ứng thu nhiệt, vì vậy nhiệt độ hồn ngun càng cao thì tốc độ hồn ngun càng nhanh, thời gian chuyển về trạng thái cân bằng càng ngắn.
Hình 4.30. Ảnh hưởng của nhiệt độ đến hiệu suất hoàn nguyên
Ngoài ra với các tỷ lệ fero silic khác nhau (từ 13 đến 30 %) đều cho thấy hiệu suất hoàn nguyên được chia ra làm hai giai đoạn. Như với mẫu 25% fero silic, giai đoạn thứ nhất từ 1050 đến 1150 oC, hiệu suất tăng rất nhanh và đạt giá trị lớn nhất 71,72 %, trong khi giai đoạn thứ 2 từ 1150 oC đến 1300 oC, hiệu suất tăng chậm hơn và đạt giá trị lớn nhất 85,86 %. Giải thích cho vấn đề này có thể căn cứ vào kết quả như đã chỉ ra trong phần tính tốn nhiệt động học. Theo đó, fero silic 72 % sử dụng trong hồn ngun có hai thành phần pha chính là Si và FeSi2, do vậy giai đoạn thứ nhất xảy ra các phản ứng hoàn nguyên của Si và giai đoạn thứ hai khi nhiệt độ cao hơn 1150 oC sẽ xảy ra phản ứng hoàn nguyên của FeSi2 dẫn đến kết quả hiệu suất tăng nhanh. Tuy vậy đối với các mức nhiệt độ 1200, 1250 và 1300 oC, hoàn nguyên trong 3 giờ thì lượng chênh lệch Mg thu được sau hồn ngun khơng nhiều. Điều này là do thời gian hoàn nguyên trong 3 giờ, phản ứng hoàn nguyên đã gần đạt đến trạng thái cân bằng. Qua kết quả thu được có thể nhận thấy mặc dù theo tính tốn nhiệt
động học, phản ứng hồn ngun có thể diễn ra ở nhiệt độ không cao 1050 oC, tuy nhiên do fero silic là hợp chất với hai thành phần pha chính là Si và FeSi2, nên để phản ứng xảy ra hoàn tồn và tốc độ phản ứng cao thì nhiệt độ hồn ngun tối thiểu cần lớn hơn 1150 oC.
4.2.4. Ảnh hưởng của tỷ lệ chất hoàn nguyên fero silic trong phối liệu
Ảnh hưởng của tỷ lệ chất hoàn nguyên fero silic trong phối liệu tại các nhiệt độ hoàn nguyên khác nhau được thể hiện trong Bảng 4.4 và Hình 4.31.
Hình 4.31. Ảnh hưởng của tỷ lệ fero silic trong phối liệu đến hiệu suất hoàn nguyên
Qua đồ thị, hiệu suất hoàn nguyên cao nhất đạt được là 85,86 %, ứng với thành phần fero silic là 25 % và nhiệt độ hồn ngun 1300 oC. Điều đó cho thấy khi tăng lượng chất hoàn nguyên từ 17 % (tương ứng mức cân bằng hóa học 1 theo phụ lục A) lên 25 % (tương ứng mức cân bằng hóa học 1,7) thì hiệu suất hồn ngun tăng. Như đã trình bày trong mục 3.2 xác định các thơng số nghiên cứu, căn cứ vào phương trình phản ứng chính giữa dolomit và silic thì khi cân bằng, 2 phân tử oxit (CaO.MgO) phản ứng hết với 1 nguyên tử Si, nghĩa là lượng fero silic cân bằng là khoảng 17 %. Khi tăng lượng fero silic thì nồng độ chất hoàn nguyên trong hỗn hợp phối liệu tăng, dẫn tới tăng tốc độ phản ứng. Điều này xảy ra bởi vì nồng độ cao hơn của một chất phản ứng sẽ dẫn đến nhiều tác động của chất phản ứng đó hơn trong một khoảng thời gian nhất định, do đó hiệu suất hồn ngun tăng lên.
Hiệu suất hoàn nguyên tăng lên khi tăng tỷ lệ fero silic đến 25 % nhưng tăng thêm lượng fero silic đến 30 % khơng làm tăng khả năng hồn ngun mà ngược lại, dẫn đến sự suy giảm hiệu suất hoàn nguyên và tăng thêm bã thải. Kết quả nghiên cứu ảnh hưởng tỷ lệ fero silic của luận án tại nhiệt độ 1100 và 1250 oC cùng với nghiên cứu của Mirsa và Morsi trình bày trong Hình 4.32. Kết quả của luận án và nghiên cứu của Morsi [68] đều cho thấy hiệu suất hoàn nguyên giảm khi dư thừa fero silic, khác biệt
là điểm cực đại trong kết quả luận án là 25 % fero silic trong khi của Morsi là 28 %. Nghiên cứu của Misra [61] khơng cho thấy hiệu suất hồn ngun giảm trong phạm vi tỷ lệ fero silic nghiên cứu.
Hình 4.32. Ảnh hưởng của tỷ lệ fero silic trong nghiên cứu của Misra [61] , Morsi
[68] và kết quả của luận án
Nguyên nhân của sự khác biệt này là do nguồn dolomit sử dụng trong các nghiên cứu này khác nhau về tỷ lệ CaO/MgO dẫn tới khác nhau về sự hình thành các hợp chất oxit phức của Mg trong bã thải. Các hợp chất oxit này bền vững nên sẽ giữ một phần Mg nằm lại trong bã thải làm hiệu suất hoàn nguyên giảm. Để nghiên cứu sự hình thành các oxit phức này, các mẫu bã phối liệu tại nhiệt độ 1200 oC với các tỷ lệ fero silic khác nhau được phân tích thành phần pha bằng phương pháp XRD thể hiện trong Hình 4.33.
Kết quả phân tích cho thấy với tỷ lệ fero silic 17 %, hợp chất Ca2SiO4 là thành phần chính trong bã thải, ngồi ra cịn một tỷ lệ nhỏ CaO và MgO chưa phản ứng. Trong khi đó ở mẫu thí nghiệm 20 % fero silic, xuất hiện thêm hợp chất oxit phức 3CaO.2SiO2, còn CaO và MgO hầu hết đã tham gia phản ứng khi khơng cịn ghi nhận đỉnh nhiễu xạ của các oxit này. Sự hình thành oxit phức 3CaO.2SiO2 là do khi tỷ lệ fero silic trong phối liệu tăng, Si dư thừa bị oxy hóa thành SiO2 và có xu hướng hình thành các hợp chất phức tạp với Ca2SiO4 như sau:
2CaO + 2MgO + Si → 2Mg + Ca2SiO4 (4.24)
Sidư + O2 → SiO2 (4.25)
Hình 4.33. Kết quả phân tích XRD bã phối liệu sau hoàn nguyên tại nhiệt độ 1250 oC với tỉ lệ fero silic lần lượt 17, 20, 25 và 30 %
Đối với các mẫu 25 và 30 % fero silic, kết quả phân tích XRD ghi nhận sự xuất hiện của các pha liên oxit phức hợp như Ca2MgSi2O7 và CaMgSi2O6. Kết quả này được kiểm chứng từ giản đồ pha của hệ CaO-MgO-SiO2 được xây dựng từ FactSage 7.2 của tác giả X.Zhang [126] trong Hình 4.34, từ giản đồ này nhận thấy khi lượng SiO2 trong hệ lớn hơn 40 % rất dễ hình thành các hợp chất phức chứa Mg như Ca3MgSi2O8, Ca2MgSi2O7, CaMgSi2O6.
Như vậy đối với các thử nghiệm với lượng chất hoàn nguyên tăng lên 30 %, kết quả ghi nhận hiệu suất thu hồi Mg giảm tại tất cả các nhiệt độ nghiên cứu. Nguyên nhân là do MgO khơng tham gia phản ứng hồn ngun mà hòa tan rắn vào trong bã xỉ Ca2SiO4 tạo thành các oxit phức bền vững kể trên. Hiện tượng này cũng đã có một số nhà nghiên cứu khác như Wynnyckyj, Morsi hay William đề cập đến [65,68,127]. Sự hình thành của hợp chất này có thể biễu diễn như sau:
Ca2SiO4 + MgO + SiO2 → Ca2MgSi2O7 (4.27)
Hình 4.34. Giản đồ pha hệ CaO-MgO-SiO2 [126]
Hình 4.35. Hiệu suất hồn ngun và hiệu suất sử dụng silic tại 1200 oC
Pha CaMgSi2O6 trong mẫu thí nghiệm 30 % fero silic có các đỉnh nhiễu xạ cường độ cao nên hợp chất này xuất hiện với hàm lượng nhiều trong bã xỉ, do vậy một lượng lớn Mg đã bị giữ lại trong bã phối liệu sau hoàn nguyên dẫn đến hiệu suất của mẫu 30 % Fe-Si giảm. Như vậy với một lượng hợp lý, khi tăng hàm fero silic trong phối liệu có thể thúc đẩy nâng cao hiệu suất của quá trình hồn ngun và tỷ lệ này nên dừng lại ở mức 25 % Fe-Si trong phối liệu. Sự gia tăng chất hoàn nguyên trên 25 %
khơng làm cải thiện khả năng hồn ngun mà lại khiến hiệu suất giảm do hinh thành các hợp chất phức bền vững chứa Mg. Điều này làm tăng lượng bã thải và giảm hiệu suất sử dụng silic như kết quả trong Hình 4.35.
4.2.5. Tối ưu thông số nhiệt độ và tỷ lệ fero silic
Nhiệt độ và tỷ lệ fero silic là một trong những thông số quan trọng liên quan đến khả năng sản xuất Mg, hai thông số này không chỉ ảnh hưởng về mặt động học phản ứng mà còn tác động đến trạng thái cân bằng của phản ứng, trong khi các thông số khác như CaF2 hay lực ép phối liệu chỉ ảnh hưởng đến tốc độ mà không làm thay đổi cân bằng phản ứng [128]. Do vậy để nghiên cứu ảnh hưởng của CaF2 và lực ép phối liệu trong các thí nghiệm tiếp theo chỉ cần đánh giá tại một thông số nhiệt độ và tỷ lệ fero silic tối ưu.
Để xác định thông số nhiệt độ và tỷ lệ fero silic tối ưu, từ các giá trị về sự thay đổi của hiệu suất hoàn nguyên và hiệu suất sử dụng silic phụ thuộc vào hai thông số này trong Bảng 4.4, sử dụng phần mềm Design–Expert để phân tích dữ liệu, phương trình hồi quy của hiệu suất hồn ngun được xác định bởi hàm bậc 4 như sau:
HHN (%) = 74,23 + 10,66 A + 16,20 B -5,62 AB – 4,81 A2 + 3,88B2 – 2,42 A²B + 0,3 AB² - 7,13 A³ + 16,09 B³ + 3,69 A²B² - 0,43 A³B + 4,77 AB³ -
4,23 A⁴ -27,16 B⁴ (4.29)
Hệ số tương quan R = 0,9948
Phương trình hồi quy của hiệu suất sử dụng silic được xác định bởi hàm bậc 3 như sau:
HSi (%) = 46,08 – 12,86 A + 9,24 B – 7,83 AB – 2,23 A2 – 14,46 B2 – 1,50
A²B + 4,43 AB² + 9,46 B³ (4.30) Hệ số tương quan R = 0,9879
Hình 4.36. Đồ thị dạng 2D với các đường đồng mức và dạng 3D cho biết ảnh
Hình 4.37. Đồ thị dạng 2D với các đường đồng mức và dạng 3D cho biết ảnh
hưởng của nhiệt độ và tỷ lệ fero silic đến hiệu suất sử dụng silic.
Trong đó số hạng A3 của hàm bậc 3 có giá trị p > 0,1 và khơng có ảnh hưởng đáng kể đến hàm mục tiêu nên được lược bỏ. Với A (%) là tỷ lệ fero silic trong phối liệu, B (oC) là nhiệt độ hoàn nguyên. Đồ thị hiệu suất hoàn nguyên và hiệu suất sử dụng silic từ phương trình (4.29) và (4.30) được thể hiện trong Hình 4.36 và Hình 4.37. Kết quả phương sai và kiểm định hàm mục tiêu được trình bày trong Bảng 4.5.
Bảng 4.5. Kết quả phân tích phương sai cho mơ hình đa thức bậc 4 theo hiệu suất
hoàn nguyên và đa thức bậc 3 theo hiệu suất sử dụng silic
TT Mơ hình Kiểm chứng mơ hình
Giá trị F Giá trị p R2 CV (%)
1 Hiệu nguyên suất hoàn 97,69 < 0,0001 0,9892 6,01 2 Hiệu suất sử dụng silic 100,66 < 0,0001 0,9746 7,9 Giá trị hệ số tương quan R giữa kết quả thực nghiệm và kết quả mơ hình lần lượt là 0,9948 và 0,9879. Giá trị hệ số tương quan cao cho thấy có sự tương đồng giữa kết quả dự đoán và kết quả thực nghiệm. Điều này cho thấy phương trình hồi quy đã mơ tả chính xác các số liệu thực nghiệm.
Kiểm định F của mơ hình (hay kiểm định Fisher) thể hiện trong Bảng 4.5. Giá trị
p của hiệu suất hoàn nguyên và hiệu suất sử dụng silic đều nhỏ hơn 0,0001, nghĩa là
chỉ có nhỏ hơn 0,01 % sự thay đổi của giá trị F là phần nhiễu mà mơ hình khơng tính tốn được. Kết quả này cho thấy độ tương thích tốt của hai phương trình hồi quy so với số liệu thực nghiệm, từ đó cho thấy độ tin cậy thống kê cao.
Hệ số xác định R2 của hiệu suất hoàn nguyên và hiệu suất sử dụng silic lần lượt là 0.9892 và 0.9746 cho biết lần lượt 98,92 %, 97,46 % sự biến đổi của hiệu suất hoàn nguyên, hiệu suất sử dụng silic là do ảnh hưởng của các biến độc lập như nhiệt độ, tỷ lệ fero silic; chỉ có lần lượt là 1,08 % và 2,54 % sự thay đổi là do các yếu tố không xác định gây ra (sai số ngẫu nhiên). Bên cạnh đó, hệ số biến thiên theo độ lệch chuẩn
tương đối CV khá thấp (hệ số CV lần lượt là 6,01 % và 7,9 %) chứng tỏ các thí nghiệm được thực hiện chính xác. Các kết quả kiểm định cho thấy sự đúng đắn của các mơ hình xây dựng được.
Từ phương trình hồi quy, sử dụng modul tối ưu hóa với hàm mục tiêu là hiệu suất hoàn nguyên và hiệu suất sử dụng silic đạt giá trị cao nhất tương ứng, điều kiện biên là tỷ lệ fero silic (A) 25 % và nhiệt độ hoàn nguyên (B) 1150 oC. Kết quả giá trị tối ưu tại nhiệt độ 1250 oC và tỷ lệ khối lượng fero silic 19,65 %. Với kết quả này,