Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

145 51 0
Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI BỘ GIÁO DỤC VÀ ĐÀO TẠO LỜI CAM ĐOAN TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI Tác giả xin cam đoan cơng trình nghiên cứu thân tác giả hướng dẫn khoa học PGS.TS Vũ Duy Hải tài liệu tham khảo trích dẫn Các số liệu, kết nghiên cứu luận án trung thực, khách quan Phan Đăng Hưng chưa tác giả khác công bố Phan Đăng HàHưng Nội, ngày 31 tháng 12 năm 2021 Người hướng dẫn khoa học Tác giả luận án PHÁT TRIỂN KỸ THUẬT THU NHẬN TÍN HIỆU TIM ĐỒ TRỞ KHÁNG NGỰC ICG ỨNG DỤNG PHÁT TRIỂN KỸ THUẬT THU PGS.TS Vũ Duy Hải PhanNHẬN Đăng Hưng TRONG PHÉP ĐO THƠNG SỐ CUNG LƯỢNG TIM TÍN HIỆU TIM ĐỒ TRỞ KHÁNG NGỰC ICG ỨNG DỤNG TRONG PHÉP ĐO THÔNG SỐ CUNG LƯỢNG TIM Ngành: Kỹ thuật Điện tử Mã số: 9520203 LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỆN TỬ LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỆN TỬ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS VŨ DUY HẢI Hà Nội - 2021 Hà Nội - 2021 LỜI CẢM ƠN Trong thời gian thực luận án, nhận động viên, tạo điều kiện thuận lợi quan công tác, nơi đào tạo, các thầy giáo, giáo, bạn bè, gia đình đồng nghiệp Đây nguồn động lực to lớn giúp vượt qua các khó khăn, thử thách để hồn thành luận án Trước tiên, tơi xin bày tỏ lịng biết ơn chân thành sâu sắc đến PGS.TS Vũ Duy Hải, người ln tận tình giúp đỡ, hướng dẫn, bảo tơi suốt q trình nghiên cứu Thầy dành nhiều thời gian tâm huyết, hỗ trợ mặt để tơi hồn thành luận án Tôi xin chân thành cảm ơn thầy giáo, cô giáo Bộ môn Công nghệ Điện tử Kỹ thuật Y sinh, Viện Điện tử - Viễn thông, Trường Đại học Bách khoa Hà Nội định hướng, đóng góp ý kiến, giúp đỡ tơi q trình học tập, nghiên cứu Tôi xin cảm ơn thành viên nhóm nghiên cứu tim đồ trở kháng ngực – Trung tâm Điện tử y sinh, Trường Đại học Bách khoa Hà Nội; tình nguyện viên hỗ trợ tham gia với việc triển khai thí nghiệm đo lường, phân tích tín hiệu trở kháng ngực phịng thí nghiệm Tơi xin trân trọng cảm ơn tới Ban Giám hiệu, đơn vị liên quan Trường Đại học Bách Khoa Hà nội Trường Đại học Công nghiệp Hà Nội tạo điều kiện thuận lợi cho tơi q trình học tập, nghiên cứu Cuối cùng, xin chân thành cảm ơn bạn bè, gia đình đồng nghiệp ln quan tâm, động viên, giúp đỡ tơi hồn thành luận án Hà Nội, ngày 31 tháng 12 năm 2021 Tác giả luận án Phan Đăng Hưng MỤC LỤC MỤC LỤC i DANH MỤC CÁC TỪ VIẾT TẮT iv DANH MỤC BẢNG BIỂU .vi DANH MỤC HÌNH VẼ vii MỞ ĐẦU Lý chọn đề tài Mục tiêu luận án Đối tượng, phạm vi phương pháp nghiên cứu luận án Đối tượng nghiên cứu Phạm vi nghiên cứu Phương pháp nghiên cứu Ý nghĩa khoa học thực tiễn luận án Về ý nghĩa khoa học Về ý nghĩa thực tiễn Các đóng góp luận án .5 Bố cục luận án CHƯƠNG CƠ SỞ LÝ THUYẾT VÀ CÁC CƠNG TRÌNH NGHIÊN CỨU LIÊN QUAN 1.1 Tim huyết động 1.1.1 Cấu trúc tim hoạt động bơm máu 1.1.2 Cung lượng tim thông số huyết động liên quan 10 1.1.3 Các yếu tố ảnh hưởng tới cung lượng tim 11 1.1.4 Vai trị cung lượng tim chẩn đốn điều trị 13 1.1.5 Các phương pháp đo cung lượng tim 13 1.2 Phương pháp đo cung lượng tim tim đồ trở kháng ngực .18 1.2.1 Giới thiệu chung 18 1.2.2 Trở kháng ngực tim đồ trở kháng ngực 18 1.2.3 Tính tốn cung lượng tim từ tín hiệu ICG 22 1.3 Kỹ thuật ghi đo tín hiệu ICG 24 1.3.1 Mơ hình tổng quát 24 1.3.2 Phương pháp giải điều chế xử lý tín hiệu 28 1.3.3 Các loại nhiễu điển hình .30 1.4 Một số vấn đề tồn nghiên cứu liên quan 33 1.4.1 Vấn đề độ xác tính hiệu giải điều chế tín hiệu 33 1.4.2 Vấn đề chồng lấn vị trí đặt điện cực .36 1.4.3 Ảnh hưởng hoạt động hô hấp 37 1.5 Kết luận chương 44 CHƯƠNG NÂNG CAO HIỆU QUẢ VÀ TÍNH ỨNG DỤNG CỦA HỆ THỐNG THU NHẬN TÍN HIỆU ICG 46 2.1 Đề xuất mơ hình thu nhận tín hiệu ICG .46 2.1.1 Đề xuất ý tưởng số hóa đỉnh sóng mang 46 2.1.2 Mô tả chi tiết giải pháp mô hình hệ thống .47 2.1.3 Thí nghiệm kết 50 2.2 Đề xuất vị trí đặt điện cực thu nhận tín hiệu ICG 56 2.2.1 Đề xuất vị trí đặt điện cực 56 2.2.2 Thí nghiệm kết 58 2.3 Kết luận chương 70 CHƯƠNG NGHIÊN CỨU XÁC ĐỊNH ĐẶC TRƯNG CỦA NHIỄU THỞ TRONG PHÉP ĐO TÍN HIỆU ICG .72 3.1 Xây dựng hệ thống thu nhận đồng thời tín hiệu TEB ECG .72 3.1.1 Mục đích .72 3.1.2 Thiết kế hệ thống 72 3.1.3 Xây dựng khối 73 3.1.4 Kết 77 3.2 Xây dựng cơng cụ hỗ trợ xử lý tín hiệu ICG 81 3.2.1 Mục đích .81 3.2.2 Xây dựng công cụ phần mềm thiết kế thực lọc số 82 3.2.3 Xây dựng công cụ phần mềm phân tích xử lý tín hiệu ICG 84 3.3 Quy trình xây dựng liệu nhiễu thở phép đo ICG 86 3.3.1 Mục đích .86 3.3.2 Xây dựng quy trình thu nhận liệu 86 3.3.3 Lựa chọn tình nguyện viên 87 3.3.4 Thực thu nhận liệu 87 3.3.5 Xử lý chuẩn hóa liệu 89 3.3.6 Mô tả lưu trữ liệu 89 3.4 Thuật toán tách xác định đặc trưng nhiễu thở .90 3.4.1 Tách nhiễu thở từ tín hiệu TEB 90 3.4.2 Xác định dải phổ biên độ nhiễu thở 96 3.5 Kết luận chương 98 CHƯƠNG PHÁT TRIỂN THUẬT TOÁN GIẢM NHIỄU THỞ TRONG PHÉP ĐO TÍN HIỆU ICG 99 4.1 Đề xuất xây dựng thuật toán lọc nhiễu thở 99 4.1.1 Đề xuất ý tưởng 99 4.1.2 Thiết kế mơ hình triển khai chi tiết thuật toán lọc nhiễu .100 4.2 Đề xuất phương pháp quy trình đánh giá việc lọc nhiễu thở 105 4.2.1 Phương pháp đánh giá 105 4.2.2 Tiến hành đánh giá 106 4.3 Kết bàn luận .107 4.3.1 Kết 107 4.3.2 Bàn luận 114 4.4 Kết luận chương 116 KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN .117 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN 119 TÀI LIỆU THAM KHẢO .120 PHỤ LỤC 127 PHỤ LỤC 132 PHỤ LỤC 133 DANH MỤC CÁC TỪ VIẾT TẮT Từ viết tắt Tiếng Anh Tiếng Việt ABW Actual Body Weight Cân nặng thực tế ADC Analog to Digital Converter Bộ chuyển đổi tương tự sang số BSA Body Surface Area Diện tích bề mặt thể CI Cardiac Index Chỉ số cung lượng tim CO Cardiac output Cung lượng tim CPLD Complex Programmable Logic Device Vi mạch lập trình CVP Central Venous Pressure Huyết áp tĩnh mạch trung tâm DSP Digital Signal Processor Bộ xử lý tín hiệu số ECG Electrocardiogram Điện tim đồ FPGA Field Programmable Gate Array Chip logic số lập trình HR Heart rate Nhịp tim IBW Ideal Body Weight Cân nặng lý tưởng Tim đồ trở kháng ngực Impedance cardiography ICG Thuộc trở kháng ngực Impedance cardiographic (Trở kháng ngực hoạt động tim) Trở kháng phổi IP Impedance pneumography (Trở kháng ngực hoạt động hô hấp) LVET Left ventricle ejection time Thời gian tống máu thất trái MAP Mean Arterial Pressure Huyết áp động mạch trung bình PAC-TD Pulmonary Artery Catheter – Thermodulition Pha loãng nhiệt catheter động mạch phổi RMSE Root Mean Squared Error Sai số bình phương trung bình gốc RMSPE Root Mean Squared Percentage Error Sai số bình phương trung bình gốc tương đối SNR Signal to Noise Ratio Tỷ số tín hiệu nhiễu SV Stroke volume Thế tích nhát bóp Từ viết tắt Tiếng Anh Tiếng Việt SVI Stroke Volume Index Chỉ số thể tích nhát bóp SVR Systemic Vascular Resistance Sức cản mạch hệ thống TEB Thoracic electrical bioimpedance Trở kháng ngực TPTD Transpulmonary Thermodilution Pha loãng nhiệt xuyên phổi WHO World health organization Tổ chức y tế giới Z Trở kháng vùng ngực Z0 Trở kháng ∆V Sự thay đổi thể tích vùng ngực ∆Z Trở kháng thay đổi vùng ngực DANH MỤC BẢNG BIỂU Bảng 1.1 Tổng hợp phương pháp đo cung lượng tim 14 Bảng 1.2 Tổng hợp phương pháp lọc nhiễu thở phép đo tín hiệu ICG 38 Bảng 2.1 Tổng hợp số RMSE RMSPE lần đo đối chứng 55 Bảng 2.2 Tổng hợp kết đo vị trí gắn điện cực chuẩn vị trí đề xuất số 60 Bảng 2.3 Tổng hợp kết đo vị trí gắn điện cực chuẩn vị trí đề xuất số 63 Bảng 2.4 Tổng hợp kết đo vị trí gắn điện cực chuẩn vị trí đề xuất số 65 Bảng 2.5 Tổng hợp số thống kê đo lường huyết động vị trí đề xuất 68 Bảng 3.1 Thông số kĩ thuật mô-đun nguồn DC-DC JHM1524D12 77 Bảng 3.2 Thông số kỹ thuật mạch đo tín hiệu TEB ECG 78 Bảng 3.3 Chức phần mềm lưu hiển thị liệu TEB ECG 79 Bảng 4.1 Tổng hợp số SNR RMSPE tính từ liệu thử nghiệm 108 DANH MỤC HÌNH VẼ Hình 1.1 Cấu trúc tim, đường máu buồng tim van tim [1] Hình 1.2 Diễn biến chu chuyển tim chức tâm thất trái [1] Hình 1.3 Quan hệ cung lượng tim nhịp tim [6] 11 Hình 1.4 Tín hiệu ICG tiêu biểu điểm đặc trưng [25] 19 Hình 1.5 Biểu diễn đồng thời tín hiệu ICG, ECG trở kháng thay đổi ∆Z [26] 21 Hình 1.6 Sơ đồ khối thực thi thuật toán Pan-Tompkins 21 Hình 1.7 Nguyên lý đo trở kháng ngực 25 Hình 1.8 Minh họa cách sử dụng điện cực trịn 26 Hình 1.9 Cấu trúc hệ thống đo ICG điển hình phương pháp tương tự 28 Hình 1.10 Cấu trúc hệ thống đo ICG điển hình phương pháp số hóa .30 Hình 1.11 Vị trí chuẩn điện cực theo mơ hình điện cực [23] 36 Hình 2.1 Tín hiệu điều chế điểm lấy mẫu đỉnh 46 Hình 2.2 Vị trí khối thu nhận tín hiệu ICG mơ hình đề xuất 48 Hình 2.3 Mơ hình hệ thống thu nhận tín hiệu ICG đề xuất 49 Hình 2.4 Hệ thống phần cứng dùng thử nghiệm thực tế .51 Hình 2.5 Vị trí điểm đo kiểm tra VA, VB, VC .52 Hình 2.6 Dạng sóng đo điểm trung gian 52 Hình 2.7 Dạng sóng tín hiệu Z thu sau số hóa 53 Hình 2.8 Giá trị chuẩn hóa ΔZ đo hệ thống đề xuất .53 Hình 2.9 Giá trị chuẩn hóa ΔZ đo thiết bị đối chứng 54 Hình 2.10 Bản ghi lần đo 35 giây hệ thống đề xuất 56 Hình 2.11 Bản ghi lần đo 35 giây thiết bị đối chứng 56 Hình 2.12 Minh họa vị trí điện cực đề xuất .58 Hình 2.13 Vị trí đề xuất vị trí điện cực chuẩn đo thiết bị Niccomo 58 Hình 2.14 Biểu đồ phân tán với R2 phù hợp Bland-Altman giá trị HR đo vị trí chuẩn vị trí đề xuất số 61 [14] Esper, Stephen A and Pinsky, Michael R (2014), "Arterial waveform analysis", Best Practice and Research: Clinical Anaesthesiology 28(4), pp 363-380 [15] Sangkum, Lisa, et al (2016), "Minimally invasive or noninvasive cardiac output measurement: an update", Journal of Anesthesia 30(3), pp 461-480 [16] Schober, Patrick, Loer, Stephan A., and Schwarte, Lothar A (2009), "Transesophageal doppler devices: A technical review", Journal of Clinical Monitoring and Computing 23(6), pp 391-401 [17] Singer, Mervyn (2009), "Oesophageal Doppler", Current Opinion in Critical Care 15(3), pp 244-248 [18] Saugel, Bernd, Cecconi, Maurizio, and Hajjar, Ludhmila Abrahao (2019), "Noninvasive Cardiac Output Monitoring in Cardiothoracic Surgery Patients: Available Methods and Future Directions", Journal of Cardiothoracic and Vascular Anesthesia 33(6), pp 1742-1752 [19] Kobe, Jeff, et al (2019), "Cardiac output monitoring: Technology and choice", Annals of Cardiac Anaesthesia 22(1), pp 6-17 [20] Marik, Paul E (2013), "Noninvasive cardiac output monitors: A state-of theart review", Journal of Cardiothoracic and Vascular Anesthesia 27(1), pp 121-134 [21] Critchley, L A H (1998), "Impedance cardiography The impact of new technology", Anaesthesia 53(7), pp 677-684 [22] Hurwitz, Barry E., et al (1993), "Signal fidelity requirements for deriving impedance cardiographie measures of cardiac function over a broad heart rate range", Biological Psychology 36(1-2), pp 3-21 [23] Bernstein, D P (1986), "A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale", Crit Care Med 14, pp 904909 [24] Carvalho, P., et al (2011), "Robust characteristic points for ICG: Definition and comparative analysis", BIOSIGNALS 2011 - Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, pp 161-168 [25] Ulbrich, Mark, et al (2014), "Influence of physiological sources on the impedance cardiogram analyzed using 4D FEM simulations", Physiological Measurement 35(7), pp 1451-1468 [26] H Yazdanian, A Mahnam M Edrisi and Esfahani, M A (2016), "Design and Implementation of a Portable Impedance Cardiography System for 118 Noninvasive Stroke Volume Monitoring", JOunal of Medical Signal & Sensors 6(1), pp 1-10 [27] Pan, J and Tompkins, W J (1985), Pan Tomkins 1985 - QRS detection.pdf, Editor^Editors, pp 230-236 [28] Gerard, Cybulski, et al (2012), "Impedance cardiography: Recent advancements", Cardiology Journal 19(5), pp 550-556 [29] Appelbaum, N and Clarke, J (2021), "Ideal body weight calculations: fit for purpose in modern anaesthesia?", Eur J Anaesthesiol 38(12), pp 1211-1214 [30] Ulbrich, Mark, et al (2015), "Pulmonary fluid accumulation and its influence on the impedance cardiogram: Comparison between a clinical trial and fem simulations", Lekar a Technika 44(4), pp 28-34 [31] Kubicek Wg, Karnegis J N Patterson R P Witsoe D A Mattson R H (1966), "Development and evaluation of an impedance cardiac output system", Aerosp Med 37(12):120 [32] Penney, B C., Patwardhan, N A., and Wheeler, H B (1985), "Simplified electrode array for impedance cardiography", Medical & Biological Engineering & Computing 23(1), pp 1-7 [33] Bernstein, D P (1986), Continuous noninvasive real-time monitoring of stroke volume and cardiac output by thoracic electrical bioimpedance, Editor^Editors, pp 898-901 [34] https://www.biopac.com/wp-content/uploads/NICO100C.pdf [35] https://pdf.medicalexpo.com/pdf/medis-medizinischemesstechnik/niccomo/69321-158439.html [36] https://support.mindwaretech.com/manuals/ [37] Đức, Nguyễn Minh (2013), Nghiên cứu đo cung lượng tim không can thiệp phương pháp trở kháng ngực (ICG) Thiết kế mạch đo thay đổi trở kháng ngực kết nối máy tính Hanoi University of Technology [38] Hải, Vũ Duy (2016), Báo cáo tổng kết đề tài Nghiên cứu chế tạo máy đo cung lượng tim phương pháp trở kháng ngực, mã số: 7/2016/HĐ-NĐT [39] S Kaufmann, A Malhotra M Ryschka (2013), "A FPGA based Measurement System for Estimation of the Stroke Volume of the Heart by measuring Bioimpedance Changes - First Results", 15th International Conference on Electrical Bio-Impedance (ICEBI) and the 14th Conference on Electrical Impedance Tomography (EIT) 119 [40] Priidel, Eiko, et al (2021), "FPGA-based 16-bit 20 MHz device for the inductive measurement of electrical bio-impedance", 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp 1-5 [41] Raza, S B., Patterson, R P., and Wang, L (1992), Filtering respiration and low-frequency movement artefacts from the cardiogenic electrical impedance signal, Editor^Editors, pp 556-561 [42] Ulrich Moissl, Peter Wabel Rolf Isermann (1992), "Filtering respiration in impedance cardiography.pdf", Med Biol Eng Comput 30, pp 556-561 [43] J C Denniston, J T Maher J T Reeves J C Cruz A Cymerman R F Grover (1976), "Measurement of cardiac output by electrical impedance at rest and during exercise.pdf", Jounal of Applied Physiology 40, pp 91-95 [44] Bour, Jean and Kellett, John (2008), "Impedance cardiography - A rapid and cost-effective screening tool for cardiac disease" 19, pp 399-405 [45] Arthur P DeMarzo, James E Calvin Russell F Kelly Thomas D Stamos (2007), "Impedance cardiography: a comparison of cardiac output vs waveform analysis for assessing left ventricular systolic dysfunction", Prog Cardiovasc Nurs 20(4), pp 145-151 [46] Duc, Nguyen Minh, Linh, Nguyen Tuan, and Thuan, Nguyen Duc (2015), "New Approach to Designing Reliable Circuit for Acquiring Impedance Cardiography Signal ( ICG )"(4), pp 36-42 [47] Arthur P DeMarzo, James E Calvin Russell F Kelly Thomas D Stamos (2005), "Using impedance cardiography to assess left ventricular systolic function via postural change in patients with heart failure", Prog Cardiovasc Nurs 20(4), pp 63-167 [48] L E Baker, L A Geddes H E Hoff C J Chaput (1966), "Physiological factors underlying transthoracic impedance variations in respiration", Journal of Applied Physiology 21(5), pp 1491-1499 [49] J L Logic, M G Maksud L H Hamilton (1967), "Factors affecting transthoracic impedance signals used to measure breathing", Journal of Applied Physiology 22(2), pp 251-254 [50] Hill, R V., Jansen, J C., and Fling, J L (1967), "Electrical impedance plethysmography: a critical analysis", Journal of applied physiology 22(1), pp 161-168 [51] Shyu, L Y., et al (2000), "Portable impedance cardiography system for realtime noninvasive cardiac output measurement" 20, pp 193-202 120 [52] Đức, Nguyễn Minh and Hà, Nguyễn Thái (2013), "Thiết kế hệ thống đo cung lượng tim liên tục phương pháp trở kháng ngực chế tạo nguồn dòng cấp cho vùng ngực", KH&CN trường đại học kỹ thuật 96, pp 3339 [53] Nguyễn Minh Đức, Nguyễn Thái Hà Vũ Duy Hải (2013), "Thiết kế mạch thu nhận xử lý tín hiệu tim đồ trở kháng ngực", KH&CN trường đại học kỹ thuật 97, pp 57-62 [54] Kusche, Roman, et al (2015), "A FPGA-based broadband EIT system for complex bioimpedance measurements—design and performance estimation", Electronics 4(3), pp 507-525 [55] Hu, Weichih, Lin, Chun Cheng, and Shyu, Liang Yu (2011), "An implementation of a real-time and parallel processing ECG features extraction algorithm in a Field Programmable Gate Array (FPGA)", Computing in Cardiology 38, pp 801-804 [56] Odry, Péter, et al (2011), "Application of the FPGA technology in the analysis of the biomedical signals", SISY 2011 - 9th International Symposium on Intelligent Systems and Informatics, Proceedings, pp 407-412 [57] Medis (2012), "Cardiovascular Lab Software Manual", pp 41-60 [58] Taylor, Robert W and Palagiri, Ashok V (2007), "Central venous catheterization", Critical Care Medicine 35(5), pp 1390-1396 [59] Kornbau, Craig, et al (2015), "Central line complications", International Journal of Critical Illness and Injury Science 5(3), pp 170-170 [60] Smith, Reston N and Nolan, Jerry P (2013), "Central venous catheters", BMJ (Online) 347(November), pp 1-11 [61] Alan S, Caroline O (2007), "Central venous catheterization", The New England journal of Medicine 356(21), pp 1-2 [62] Kelsey, Robert M and Guethlein, William (1990), "An Evaluation of the Ensemble Averaged Impedance Cardiogram" 27, pp 24-33 [63] Y Yamamoto, M S Tamura Y Mouth M Miyasita and Hamamoto, H (1998), "Design and implementation for beat-by-beat impedance cardiography", IEEE Trans Biomed Eng., pp 556-561 [64] Barros, Allan Kardec, Yoshizawa, Makoto, and Yasuda, Yoshifumi (1995), "Filtering Noncorrelated Noise in Impedance Cardiography" 42, pp 324327 [65] Pandey, Vinod K and Pandey, Prem C Wavelet based cancellation of respiratory artifacts in impedance cardiography, pp 191-194 121 [66] Mallam, Madhavi and Rao, K Chandra Bhutan (2016), "Efficient referencefree adaptive artifact cancellers for impedance cardiography based remote health care monitoring systems" [67] Pandey, Vinod K Pandey and Prem C (2005), Cancellation of Respiratory Artifact in Impedance Cardiography, Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, pp 5503-5506 [68] Hu, Xinyu, et al (2014), "Adaptive filtering and characteristics extraction for Impedance Cardiography" 7, pp 81-90 [69] Zia Ur Rahman, Shafi Shahsavar Mirza, K Murai Krishna (2019), "Adaptive Noise Cancellation Techniques for Impedance Cardiography Signal Analysis", International Journal of Innovative Technology and Exploring Engineering 8(9), pp 122-130 [70] Benabdallah, Hadjer and Kerai, Salim (2021), "Respiratory and Motion Artefacts Removal from ICG Signal Using Denoising Techniques for Hemodynamic Parameters Monitoring", Traitement du Signal 38(4), pp 919-928 [71] A Savitzky A, M J E Golay (1964), "Smoothing and differentiation of data by simplified least squares procedures", Analytical Chemistry 36(8), pp 1627-1639 [72] Schuessler T F, Gottfried S B Goldberg P Kearney R E and Bates, J H T (1998), "An adaptive filter to reduce cardiogenic oscillations on esophageal pressure signals", Ann Biomed Eng 20, pp 260-267 [73] Seppä, V P., Hyttinen, J., and Viik, J (2011), "A method for suppressing cardiogenic oscillations in impedance pneumography", Physiological Measurement 32(3), pp 337-345 [74] Criée, C P., et al (2011), "Body plethysmography - Its principles and clinical use" 105, pp 959-971 [75] J S Lundsgaard, J Grønlund N Einer-Jensen (1979), "Evaluation of a constant-temperature hot-wire anemometer for respiratory-gas-flow measurements", Medical and Biological Engineering and Computing(March), pp 211-215 [76] Casali, John G., Wierwille, Walter W., and Cordes, Richard E (1983), Respiratory measurement: Overview and new instrumentation, Editor^Editors, pp 401-405 [77] Ansari, Sardar, Ward, Kevin R., and Najarian, Kayvan (2017), Motion Artifact Suppression in Impedance Pneumography Signal for Portable Monitoring of Respiration: An Adaptive Approach, Editor^Editors, pp 387398 122 [78] N V T Van, T Diana B Alain (2002), "On selection of probability distributions for representing annual extreme rainfall series", 9ICUD, ASCE Library, USA, pp 1-10 [79] Kauppinen, Pasi K., Hyttinen, Jari A., and Malmivuo, Jaakko A (1998), Sensitivity distributions of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer model, Editor^Editors, pp 694-702 [80] Witsoe, D A., et al (1966), "Development and evaluation of an impedance cardiac output system", Aerosp Med 37, pp 1208-1212 [81] L H P Trung, V D Hai P D Hung D V Hung D Q Huan C Q Dan (2018), "A design of rheoencephalography acquisition system based on bioimpedance measurement as the basis for assessment of cerebral", Journal of Science and Technology 131, pp 87-93 [82] Benabdallah, Hadjer and Kerai, Salim (2018), "The impedance cardiography technique in medical diagnosis", Medical Technologies Journal 2(3), pp 232-244 [83] Rajmic, Pavel (2005), Method for Real-Time Signal Processing Via Wavelet Transform, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 368-378 [84] Ferretti, M and Rizzo, D (2000), "Handling borders in systolic architectures for the 1-D discrete wavelet transform for perfect reconstruction", IEEE Transactions on Signal Processing 48(5), pp 1365-1378 [85] Brislawn, Christopher M (1996), "Classification of Nonexpansive Symmetric Extension Transforms for Multirate Filter Banks", Applied and Computational Harmonic Analysis 3(4), pp 337-357 [86] Mota, H O., Vasconcelos, F H., and Silva, R M da (2005), Real-time wavelet transform algorithms for the processing of continuous streams of data, IEEE International Workshop on Intelligent Signal Processing, 2005., pp 346-351 123 PHỤ LỤC SƠ ĐỒ NGUYÊN LÝ VÀ LAYOUT CỦA MẠCH ĐO TEB VÀ ECG Phụ lục cung cấp sơ đồ nguyên lý layout PCB mạch đo TEB ECG Khối mạch nguồn  Sơ đồ nguyên lý  Layout 124 Khối mạch đo  Khối vi điều khiển trung tâm  Khối tạo nguồn dòng 125  Khối khuếch đại vi sai  Khối xử lý tín hiệu ICG  Khối xử lý tín hiệu ECG  Khối ADC 126  Khối so sánh tương tự 127  Khối truyền thơng UART có cách ly  Layout 128 PHỤ LỤC BIÊN BẢN XÁC NHẬN THAM GIA THÍ NGHIỆM ĐO TRỞ KHÁNG NGỰC (TEB) Phần phụ lục mơ tả biên xác nhận tham gia thí nghiệm đo TEB lấy liệu mục đích phục vụ mục đích nghiên cứu thuật tốn tách nhiễu thở trực tiếp từ tín hiệu TEB đo tình nguyện viên phòng Lab Thiết bị đo tuân thủ theo tiêu kĩ thuật đưa ra, quy trình đo mơ tả rõ ràng, q trình đo có tham gia y, bác sĩ GIẤY XÁC NHẬN ĐỒNG Ý THAM GIA NGHIÊN CỨU Tên là: ………………………………………………… Ngày tháng năm sinh: ……/……/……… Giới tính: …… Số CMND/ số thẻ cước: ……………………………… Số điện thoại: …………………………… Email: …………………………… Bằng giấy này, tự nguyện đồng ý tham gia dự án nghiên cứu đo lường thu nhận tín hiệu trở kháng ngực (TEB) thực tế thân để phục vụ cho việc xây dựng sở liệu tín hiệu TEB xử lý loại nhiễu nhằm nâng cao độ xác phép đo thông số huyết động Tôi xin xác nhận nội dung sau đây: Tơi tình nguyện tham gia vào việc đo tín hiệu trở kháng ngực (TEB) thiết bị nghiên cứu nhóm Trung tâm Điện tử Y sinh, trường Đại học Bách khoa Hà Nội Trước tham gia đo, bác sỹ kỹ thuật viên giới thiệu tìm hiểu công nghệ thiết bị đo, nguyên lý đo, quy trình đo vấn đề liên quan đến an toàn Trong đo, kỹ thuật viên bác sỹ tuân thủ theo quy trình đo quy tắc an tồn giới thiệu trước Sau đo, tơi cảm thấy hồn tồn bình thường, khơng có dấu hiệu bất thường sức khỏe Tôi xem lại toàn số liệu đo thân mà kỹ thuật viên ghi chép lại Tôi hồn tồn đồng ý cho nhóm nghiên cứu sử dụng liệu đo thân để phục vụ cho trình nghiên cứu dự án Hà Nội, ngày … tháng … năm 20… Xác nhận tình nguyện viên (Ký ghi rõ họ tên) 129 130 PHỤ LỤC BIÊN BẢN XÁC NHẬN THAM GIA THÍ NGHIỆM TÌM VỊ TRÍ ĐẶT ĐIỆN CỰC THAY THẾ GIẤY XÁC NHẬN Tên là: ……………………………… Ngày tháng năm sinh: ……/……/……… Số CMND/ số thẻ cước: ……………………………………………… Số điện thoại: …………………………… Email: ………………………… Được biết Trung tâm Điện tử Y sinh, trường Đại học Bách khoa Hà Nội (sau gọi tắt Trung tâm Điện tử Y sinh) cần đo cung lượng tim số tình nguyện viên để xây dựng sở liệu, phục vụ công tác nghiên cứu, đăng ký tham gia xin xác nhận nội dung sau đây: Tơi hồn tồn tình nguyện tham gia thí nghiệm đo cung lượng tim thiết bị Niccomo Cộng hịa Liên Bang Đức, phịng thí nghiệm Trung tâm Điện tử Y sinh Trước tham gia, nghe giới thiệu về: thiết bị đo Niccomo, quy trình đo cung lượng tim, vấn đề liên quan đến an toàn Trong đo, kỹ thuật viên Trung tâm Điện tử Y sinh tuân thủ theo quy trình đo quy tắc an tồn giới thiệu trước Sau đo, tơi cảm thấy hồn tồn khỏe mạnh Tơi xem số liệu đo mà kỹ thuật viên ghi chép lại 10 Trung tâm Điện tử Y sinh có tồn quyền sử dụng số liệu đo người để phục vụ công tác đào tạo, nghiên cứu, chuyển giao công nghệ, công tác khác tương lai, bao gồm có lợi nhuận phi lợi luận ………., ngày … tháng … năm 20… Xác nhận tình nguyện viên 131 (Ký ghi rõ họ tên) 132 ... tổng quát luận án nghiên cứu phát triển kỹ thu? ??t thu nhận tín hiệu tim đồ trở kháng ngực ICG để ứng dụng phép đo thông số cung lượng tim nhằm tăng cường độ xác khả ứng dụng thực tế Các mục tiêu... tham khảo có ý nghĩa kỹ thu? ??t thu nhận tín hiệu tim đồ trở kháng ngực Về ý nghĩa thực tiễn  Kết đề xuất kỹ thu? ??t nhằm nâng cao độ xác phép đo tín hiệu tim đồ trở kháng ngực ICG đồng nghĩa với việc... kết đo phạm vi nguồn lực tiếp cận CHƯƠNG CƠ SỞ LÝ THUYẾT VÀ CÁC CƠNG TRÌNH NGHIÊN CỨU LIÊN QUAN Để phát triển kỹ thu? ??t thu nhận tín hiệu tim đồ trở kháng ngực ứng dụng phép đo thông số cung lượng

Ngày đăng: 12/01/2022, 09:41

Hình ảnh liên quan

Hình 1.1 Cấu trúc của tim, đường đi của máu giữa các buồng tim và van tim [1] - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 1.1.

Cấu trúc của tim, đường đi của máu giữa các buồng tim và van tim [1] Xem tại trang 21 của tài liệu.
Hình 1.4 Tín hiệu ICG tiêu biểu và các điểm đặc trưng [25] - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 1.4.

Tín hiệu ICG tiêu biểu và các điểm đặc trưng [25] Xem tại trang 32 của tài liệu.
Hình 1.10 Cấu trúc một hệ thống đo ICG điển hình bằng phương pháp số hóa - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 1.10.

Cấu trúc một hệ thống đo ICG điển hình bằng phương pháp số hóa Xem tại trang 42 của tài liệu.
2.1 Đề xuất mô hình thu nhận tín hiệu ICG mới - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

2.1.

Đề xuất mô hình thu nhận tín hiệu ICG mới Xem tại trang 57 của tài liệu.
Hình 2.14 Mô hình hệ thống thu nhận tín hiệu ICG đề xuất - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 2.14.

Mô hình hệ thống thu nhận tín hiệu ICG đề xuất Xem tại trang 60 của tài liệu.
Hình 2.15 Hệ thống phần cứng dùng trong thử nghiệm thực tế - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 2.15.

Hệ thống phần cứng dùng trong thử nghiệm thực tế Xem tại trang 62 của tài liệu.
Hình 2.17 Dạng sóng đo được tại các điểm trung gian - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 2.17.

Dạng sóng đo được tại các điểm trung gian Xem tại trang 63 của tài liệu.
Bảng 2.4 Tổng hợp kết quả đo tại vị trí gắn điện cực chuẩn và vị trí đề xuất số 1 - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Bảng 2.4.

Tổng hợp kết quả đo tại vị trí gắn điện cực chuẩn và vị trí đề xuất số 1 Xem tại trang 70 của tài liệu.
Hình 2.25 Biểu đồ phân tán với R2 và sự phù hợp Bland-Altman giữa các giá trị HR đo tại vị trí chuẩn và vị trí đề xuất số 1 - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 2.25.

Biểu đồ phân tán với R2 và sự phù hợp Bland-Altman giữa các giá trị HR đo tại vị trí chuẩn và vị trí đề xuất số 1 Xem tại trang 71 của tài liệu.
Hình 2.28 Biểu đồ phân tán với R2 và sự phù hợp Bland-Altman giữa các giá trị LVET đo tại vị trí chuẩn và vị trí đề xuất số 1 - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 2.28.

Biểu đồ phân tán với R2 và sự phù hợp Bland-Altman giữa các giá trị LVET đo tại vị trí chuẩn và vị trí đề xuất số 1 Xem tại trang 72 của tài liệu.
 Mối tương quan và sự phù hợp của thông số LVET được thể hiện trên Hình 2. 28. - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

i.

tương quan và sự phù hợp của thông số LVET được thể hiện trên Hình 2. 28 Xem tại trang 72 của tài liệu.
Hình 2.30 Dạng sóng ICG ở vị trí chuẩn và vị trí đề xuất số 1 - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 2.30.

Dạng sóng ICG ở vị trí chuẩn và vị trí đề xuất số 1 Xem tại trang 73 của tài liệu.
Hình 2.32 Biểu đồ phân tán với R2 và sự phù hợp Bland-Altman giữa các giá trị Z0 đo tại vị trí chuẩn và vị trí đề xuất số 2 - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 2.32.

Biểu đồ phân tán với R2 và sự phù hợp Bland-Altman giữa các giá trị Z0 đo tại vị trí chuẩn và vị trí đề xuất số 2 Xem tại trang 74 của tài liệu.
Bảng 2.6 Tổng hợp kết quả đo tại vị trí gắn điện cực chuẩn và vị trí đề xuất số 3 - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Bảng 2.6.

Tổng hợp kết quả đo tại vị trí gắn điện cực chuẩn và vị trí đề xuất số 3 Xem tại trang 76 của tài liệu.
 Mối tương quan và sự phù hợp của thông số CO được thể hiện trên Hình 2 .41. - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

i.

tương quan và sự phù hợp của thông số CO được thể hiện trên Hình 2 .41 Xem tại trang 78 của tài liệu.
Bảng 2.7 Tổng hợp các chỉ số thống kê đo lường huyết động ở các vị trí đề xuất - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Bảng 2.7.

Tổng hợp các chỉ số thống kê đo lường huyết động ở các vị trí đề xuất Xem tại trang 79 của tài liệu.
Hình 3.48 Giao diện phần mềm khi thiết kế bộ lọc FIR - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 3.48.

Giao diện phần mềm khi thiết kế bộ lọc FIR Xem tại trang 93 của tài liệu.
Hình 3.50 Giao diện công cụ phần mềm phân tích và xử lý tín hiệu ICG - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 3.50.

Giao diện công cụ phần mềm phân tích và xử lý tín hiệu ICG Xem tại trang 95 của tài liệu.
Hình 3.54 Sơ đồ thực hiện thuật toán tách nhiễu thở từ tín hiệu TEB - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 3.54.

Sơ đồ thực hiện thuật toán tách nhiễu thở từ tín hiệu TEB Xem tại trang 101 của tài liệu.
Hình 3.58 Tín hiệu trở kháng ngực ở trạng thái thở nhanh - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 3.58.

Tín hiệu trở kháng ngực ở trạng thái thở nhanh Xem tại trang 105 của tài liệu.
Hình 3.57 Tín hiệu trở kháng ngực ở trạng thái thở bình thường - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 3.57.

Tín hiệu trở kháng ngực ở trạng thái thở bình thường Xem tại trang 105 của tài liệu.
Hình 3.61 Ảnh hưởng của nhiễu thở ở trạng thái bình thường lên tín hiệu ICG - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 3.61.

Ảnh hưởng của nhiễu thở ở trạng thái bình thường lên tín hiệu ICG Xem tại trang 107 của tài liệu.
Hình 3.62 Ảnh hưởng của nhiễu thở ở trạng thái thở nhanh lên tín hiệu ICG - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 3.62.

Ảnh hưởng của nhiễu thở ở trạng thái thở nhanh lên tín hiệu ICG Xem tại trang 107 của tài liệu.
Hình 3.63 Ảnh hưởng của nhiễu thở ở trạng thái thở gắng sức lên tín hiệu ICG - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 3.63.

Ảnh hưởng của nhiễu thở ở trạng thái thở gắng sức lên tín hiệu ICG Xem tại trang 108 của tài liệu.
Hình 4.64 Sơ đồ thực hiện thuật toán theo mô hình lọc nhiễu thở đề xuất - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 4.64.

Sơ đồ thực hiện thuật toán theo mô hình lọc nhiễu thở đề xuất Xem tại trang 111 của tài liệu.
Hình 4.65 Sơ đồ thuật toán Mallat phân giải và khôi phục tín hiệu - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 4.65.

Sơ đồ thuật toán Mallat phân giải và khôi phục tín hiệu Xem tại trang 112 của tài liệu.
Bảng 4.11 Tổng hợp các chỉ số SNR và RMSPE tính được từ dữ liệu thử nghiệm - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Bảng 4.11.

Tổng hợp các chỉ số SNR và RMSPE tính được từ dữ liệu thử nghiệm Xem tại trang 117 của tài liệu.
Hình 4.73 Chỉ số SNR trung bình đối với ba trạng thái thở - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 4.73.

Chỉ số SNR trung bình đối với ba trạng thái thở Xem tại trang 122 của tài liệu.
Hình 4.76 Dạng sóng tín hiệu ICG chuẩn hóa sau khi thêm nhiễu thở và sau bộ lọc wavelet của một trường hợp thở nhanh điển hình - Phát triển kỹ thuật thu nhận tín hiệu tim đồ trở kháng ngực ICG ứng dụng trong phép đo thông số cung lượng tim

Hình 4.76.

Dạng sóng tín hiệu ICG chuẩn hóa sau khi thêm nhiễu thở và sau bộ lọc wavelet của một trường hợp thở nhanh điển hình Xem tại trang 123 của tài liệu.

Từ khóa liên quan

Mục lục

  • MỤC LỤC

  • DANH MỤC CÁC TỪ VIẾT TẮT

  • DANH MỤC BẢNG BIỂU

  • DANH MỤC HÌNH VẼ

  • MỞ ĐẦU

    • Lý do chọn đề tài

    • Mục tiêu của luận án

    • Đối tượng, phạm vi và phương pháp nghiên cứu của luận án

      • Đối tượng nghiên cứu

      • Phạm vi nghiên cứu

      • Phương pháp nghiên cứu

      • Ý nghĩa khoa học và thực tiễn của luận án

        • Về ý nghĩa khoa học

        • Về ý nghĩa thực tiễn

        • Các đóng góp của luận án

        • Bố cục của luận án

        • CHƯƠNG 1. CƠ SỞ LÝ THUYẾT VÀ CÁC CÔNG TRÌNH NGHIÊN CỨU LIÊN QUAN

          • 1.1 Tim và huyết động

            • 1.1.1 Cấu trúc của tim và hoạt động bơm máu

            • 1.1.2 Cung lượng tim và các thông số huyết động liên quan

            • 1.1.3 Các yếu tố ảnh hưởng tới cung lượng tim

            • 1.1.4 Vai trò cung lượng tim trong chẩn đoán và điều trị

            • 1.1.5 Các phương pháp đo cung lượng tim

            • 1.2 Phương pháp đo cung lượng tim bằng tim đồ trở kháng ngực

              • 1.2.1 Giới thiệu chung

              • 1.2.2 Trở kháng ngực và tim đồ trở kháng ngực

                • 1.2.2.1 Trở kháng ngực – TEB và Z

Tài liệu cùng người dùng

Tài liệu liên quan