(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng

43 68 0
(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng(Luận văn thạc sĩ) Về phương pháp lồi Lôgarit và một vài ứng dụng

ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC KHOA HỌC  - PHẠM LỆ QUYÊN VỀ PHƢƠNG PHÁP LỒI LÔGARIT VÀ MỘT VÀI ỨNG DỤNG LUẬN VĂN THẠC SĨ TOÁN HỌC THÁI NGUYÊN - 2019 ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC KHOA HỌC  - PHẠM LỆ QUYÊN VỀ PHƢƠNG PHÁP LỒI LÔGARIT VÀ MỘT VÀI ỨNG DỤNG Chuyên ngành: Toán Ứng Dụng Mã số: 46 01 12 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS Bùi Việt Hƣơng THÁI NGUYÊN - 2019 ▼ö❝ ❧ö❝ ▼ð ✤➛✉ ✶ ✶ ❑■➌◆ ❚❍Ù❈ ỗ ỗ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸ ỗ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ỗ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺ ✶✳✷✳ ▼ët sè ❦✐➳♥ t❤ù❝ ❝ì sð ✈➲ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽ ✶✳✷✳✶✳ P❤➙♥ ❧♦↕✐ ♣❤÷ì♥❣ tr➻♥❤ t✉②➳♥ t➼♥❤ ❝➜♣ ❤❛✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾ ✶✳✷✳✷✳ ▼➦t ✤➦❝ tr÷♥❣✳ ❇➔✐ t♦→♥ ❈❛✉❝❤② ✈ỵ✐ ❞ú ❦✐➺♥ ❝❤♦ tr➯♥ ♠➦t ✤➦❝ tr÷♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶ ✶✳✷✳✸✳ ❙ü ♣❤ö t❤✉ë❝ ❧✐➯♥ tö❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ Pữỡ ỗ ❧æ❣❛r✐t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✹ ✷ ▼❐❚ ❱⑨■ Ù◆● ❉Ư◆● ❈Õ❆ P❍×❒◆● P❍⑩P ▲➬■ ▲➷●❆❘■❚ ✷✳✶✳ Ù♥❣ ❞ư♥❣ tr♦♥❣ ❜➔✐ t♦→♥ ❈❛✉❝❤② ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ♣❛r❛❜♦❧✐❝ ♥❣÷đ❝ t❤í✐ ❣✐❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✶✳✶✳ P❤÷ì♥❣ tr➻♥❤ ♣❛r❛❜♦❧✐❝ ♥❣÷đ❝ t❤í✐ ❣✐❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✶✳✷✳ ✣→♥❤ ❣✐→ ê♥ ✤à♥❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✷✳ Ù♥❣ ❞ư♥❣ tr♦♥❣ ❜➔✐ t♦→♥ ❈❛✉❝❤② ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ▲❛♣❧❛❝❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✷✳✶✳ P❤÷ì♥❣ tr➻♥❤ ▲❛♣❧❛❝❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✷✳✷✳ ✣→♥❤ ❣✐→ ê♥ ✤à♥❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ✷✵ ✷✵ ✷✵ ✷✹ ✷✽ ✷✽ ✷✾ ✹✵ ▼Ð ✣❺❯ ❇➔✐ t♦→♥ ✤➦t ❦❤æ♥❣ ❝❤➾♥❤ ①✉➜t ❤✐➺♥ tr♦♥❣ ♥❤✐➲✉ ❧➽♥❤ ✈ü❝ ù♥❣ ❞ö♥❣✳ ❇➔✐ t♦→♥ ♥➔② ❝â ❧✐➯♥ q t ỵ t ỵ s t♦→♥ ✈➲ ❧➽♥❤ ✈ü❝ ✤✐➺♥ s✐♥❤ ❤å❝✳✳✳ ❚r♦♥❣ ♠ët ❜➔✐ ❜→♦ ♥ê✐ t✐➳♥❣ ❝õ❛ ❍❛❞❛♠❛r❞✱ ❜➔✐ t♦→♥ ♥➔② ❧➛♥ ✤➛✉ t ữủ ợ t ữ ởt ✤✐➸♥ ✈➲ ❜➔✐ t♦→♥ ✤➦t ❦❤æ♥❣ ❝❤➾♥❤✳ ✣➦❝ ✤✐➸♠ ♥ê✐ ❜➟t ❝õ❛ ❜➔✐ t♦→♥ ♥➔② ❧➔ ♠ët t❤❛② ✤ê✐ ♥❤ä tr♦♥❣ ❞ú ❦✐➺♥ ❝ô♥❣ ❝â t❤➸ ❞➝♥ ✤➳♥ ♠ët s❛✐ ❧➺❝❤ ❧ỵ♥ ✈➲ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥✳ ❍❛❞❛♠❛r❞ ❝❤♦ r➡♥❣ t t ổ ổ õ ỵ ✈➟t ❧➼✳ ❈❤➼♥❤ ✈➻ ✈➟②✱ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ ❜➔✐ t♦→♥ ✤➦t ❦❤æ♥❣ ❝❤➾♥❤ ✤➸ t➻♠ r❛ ❝→❝ ✤→♥❤ ❣✐→ ê♥ ✤à♥❤ ✈➔ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ❝❤➾♥❤ ❤â❛ ❧➔ ♠ët q trồ Pữỡ ỗ ổrt ởt tr ♥❤ú♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❞ò♥❣ ✤➸ ê♥ ✤à♥❤ ❤â❛ ❝→❝ ❜➔✐ t♦→♥ ✤➦t ❦❤ỉ♥❣ ❝❤➾♥❤ tr♦♥❣ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣✳ P❤÷ì♥❣ ♣❤→♣ ♥➔② ✤÷đ❝ ♥❣❤✐➯♥ ❝ù✉ ❜ð✐ P✉❝❝✐ ✭✶✾✺✺✮✱ ❏♦❤♥ ✭✶✾✺✺✱ ✶✾✻✵✮✱ ▲❛✈r❡♥t✐❡✈ ✭✶✾✺✻✮ ❛♥❞ P❛②♥❡ ✭✶✾✻✵✮✱ ✣✐♥❤ ◆❤♦ ❍➔♦ ✈➔ ◆❣✉②➵♥ ❱➠♥ ✣ù❝ ✭✷✵✵✾✱ ✷✵✶✵✱ ✷✵✶✶✮✳ ✣➙② ❧➔ ❦➽ t❤✉➟t ✤→♥❤ ❣✐→ ❞ü❛ tr➯♥ ❝→❝ ❜➜t ✤➥♥❣ t❤ù❝ ❜➟❝ ữ r ợ tr ợ ữợ ởt ỗ ổrt ❧➔ ♠ët ❤➔♠ ❝õ❛ ♥❣❤✐➺♠✳ ❈→❝ ✤→♥❤ ❣✐→ ✤â ✤÷đ❝ ❞ò♥❣ ✤➸ t❤✐➳t ❧➟♣ t➼♥❤ ❞✉② ♥❤➜t ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✈➔ t❛ ❝â t❤➸ ❝❤ù♥❣ ♠✐♥❤ ✤÷đ❝ sü ♣❤ư t❤✉ë❝ ❧✐➯♥ tö❝ ❝õ❛ ♥❣❤✐➺♠ ✈➔♦ ❞ú ❦✐➺♥ ✤➣ ❝❤♦ t❤❡♦ ♠ët ♥❣❤➽❛ ♥➔♦ ✤â✳ ▲✉➟♥ ✈➠♥ tr➻♥❤ ❜➔② ✈➲ ữỡ ỗ ổrt ởt số ự ♣❤÷ì♥❣ ♣❤→♣ ✤➸ ê♥ ✤à♥❤ ❤â❛ ❜➔✐ t♦→♥ ✤➦t ❦❤ỉ♥❣ ❝❤➾♥❤ tr♦♥❣ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣✳ ❈ư t❤➸✱ ❧✉➟♥ ỗ ữỡ ữỡ t tr ỗ ởt tự ỡ ữỡ tr r ữỡ ỗ ổrt ❈❤÷ì♥❣ ✷✱ t→❝ ❣✐↔ tr➻♥❤ ❜➔② ❤❛✐ ❜➔✐ t♦→♥ ♠✐♥❤ ❤å❛ ❝❤♦ ♣❤÷ì♥❣ ✶ ♣❤→♣ ♥➔②✱ ✤â ❧➔ ❜➔✐ t♦→♥ ❈❛✉❝❤② ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ♣❛r❛❜♦❧✐❝ ♥❣÷đ❝ t❤í✐ ❣✐❛♥ ✈➔ ❜➔✐ t♦→♥ ❈❛✉❝❤② ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ▲❛♣❧❛❝❡✳ ✣➙② ❧➔ ❝→❝ ❜➔✐ t♦→♥ ✤➦t ❦❤ỉ♥❣ ❝❤➾♥❤ ✈➔ t→❝ ❣✐↔ ✤➣ sû ❞ư♥❣ ữỡ ỗ ổrt ữ r ✤à♥❤ ❝❤♦ ♥❣❤✐➺♠ ❝õ❛ ❝→❝ ❜➔✐ t♦→♥ ♥➔② ✈ỵ✐ ✤✐➲✉ ❦✐➺♥ ✤÷đ❝ ❜ê s✉♥❣✳ P❤➛♥ ❝✉è✐ ❈❤÷ì♥❣ ✷✱ t→❝ ❣✐↔ ❝â tr➻♥❤ ❜➔② t❤➯♠ ♠ët ❜➔✐ t♦→♥ ❝â t❤➸ ①❡♠ ♥❤÷ ♠ð rë♥❣ ❝õ❛ ❜➔✐ t♦→♥ ❈❛✉❝❤② ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ữủ t ữợ sỹ ữợ ũ t ữỡ ổ t t ữợ ❞➝♥✱ ❝❤➾ ❜↔♦ ❡♠ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ ✈➔ ♥❣❤✐➯♥ ❝ù✉✳ ❊♠ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ s➙✉ s➢❝ tỵ✐ ❈ỉ✳ ❊♠ ❝ơ♥❣ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ tr➙♥ t❤➔♥❤ tỵ✐ ❚❤➛② ❈ỉ ❣✐→♦ ❦❤♦❛ ❚♦→♥ ✲ ❚✐♥✱ tr÷í♥❣ ✣↕✐ ❤å❝ ❑❤♦❛ ❤å❝✱ ✣↕✐ ❤å❝ ❚❤→✐ ◆❣✉②➯♥ ✤➣ t➟♥ t➻♥❤ ❣✐↔♥❣ ❞↕② ✈➔ t↕♦ ♠å✐ ✤✐➲✉ ❦✐➺♥ t❤✉➟♥ ❧ñ✐ tr♦♥❣ q✉→ tr➻♥❤ ❡♠ ❤å❝ t➟♣ ✈➔ ♥❣❤✐➯♥ ❝ù✉ t↕✐ tr÷í♥❣✳ ❊♠ ①✐♥ tr➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❚❙✳ ▼❛✐ ❱✐➳t ❚❤✉➟♥ ✈➔ ❚❙✳ ❚r÷ì♥❣ ▼✐♥❤ ❚✉②➯♥ ✤➣ ❞➔♥❤ sü q✉❛♥ t➙♠ ✈➔ ❝â ♥❤ú♥❣ ❧í✐ ✤ë♥❣ ✈✐➯♥ ❦à♣ t❤í✐ ✤➸ ❡♠ ❝è ❣➢♥❣ ❤♦➔♥ t❤➔♥❤ ❧✉➟♥ ✈➠♥ ♥➔②✳ ❈✉è✐ ❝ò♥❣ ❡♠ ①✐♥ ❝↔♠ ì♥ ❣✐❛ ✤➻♥❤✱ ❜↕♥ ỗ ổ t↕♦ ✤✐➲✉ ❦✐➺♥ ❝❤♦ ❡♠ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ ✈➔ t❤ü❝ ❤✐➺♥ ❧✉➟♥ ✈➠♥✳ ✷ ❈❤÷ì♥❣ ✶ ❑■➌◆ ỗ ỗ tr➻♥❤ ❜➔② ♠ët sè ❦❤→✐ ♥✐➺♠✱ ✤à♥❤ ♥❣❤➽❛ ✈➔ ❦➳t q tt q ỗ t ỗ ữủ t tứ ỗ a, b ∈ Rn✳ ✐✮ ✣÷í♥❣ t❤➥♥❣ ✤✐ q✉❛ ❤❛✐ ✤✐➸♠ a ✈➔ b ❧➔ t➟♣ ❤ñ♣ ❝â ❞↕♥❣ {x ∈ Rn |x = λa + (1 − λ)b, λ ∈ R} ✐✐✮ ✣♦↕♥ t❤➥♥❣ ✤✐ q✉❛ ❤❛✐ ✤✐➸♠ a ✈➔ b ❧➔ t➟♣ ❤ñ♣ ❝â ❞↕♥❣ {x ∈ Rn |x = λa + (1 − λ)b, λ ∈ [0, 1]} ✣à♥❤ ♥❣❤➽❛ ✶✳✷ ❚➟♣ C ⊂ Rn ✤÷đ❝ ❣å✐ ❧➔ t ỗ C ự t ố ✤✐➸♠ ❜➜t ❦ý ❝õ❛ ♥â✱ tù❝ ❧➔ ∀x, y ∈ C, ∀λ ∈ [0, 1], t❛ ❝â λx + (1 − λ)y ∈ C ✣à♥❤ ♥❣❤➽❛ ✶✳✸ ✐✮ ❚❛ ♥â✐ x tờ ủ ỗ tỡ x1, x2, · · · , xk ♥➳✉ k k λj x ✈ỵ✐ λj > 0, ∀j = 1, 2, · · · , k ✈➔ j x= j=1 λj = j=1 ✸ ✐✐✮ ❚❛ ♥â✐ x ❧➔ tê ❤ñ♣ ❛❢❢✐♥❡ ❝õ❛ ❝→❝ ✤✐➸♠ ✭✈❡❝tì✮ x1 , x2 , · · · , xk ♥➳✉ k k λj x ✈ỵ✐ j x= j=1 λj = j=1 ▼➺♥❤ ✤➲ ✶✳✶ ủ C ỗ õ ự tờ ủ ỗ õ tù❝ ❧➔ ✈ỵ✐ ♠å✐ k ∈ N✱ ✈ỵ✐ ♠å✐ λ1 , λ2 , · · · , λk > s❛♦ ❝❤♦ k λj = j=1 ✈➔ ✈ỵ✐ ♠å✐ x1 , x2 , · · · , xk ∈ C t❛ ❝â k λj xj ∈ C j=1 ✣à♥❤ ♥❣❤➽❛ ✶✳✹ ▼ët t➟♣ C ✤÷đ❝ ❣å✐ ❧➔ ♥â♥ ♥➳✉ ✈ỵ✐ ♠å✐ λ > 0✱ ✈ỵ✐ ♠å✐ x ∈ C t❛ ❝â λx ∈ C ✳ ✐✮ ▼ët ♥â♥ ✤÷đ❝ õ ỗ õ t ỗ ởt õ ỗ ữủ õ õ ❦❤ỉ♥❣ ❝❤ù❛ ✤÷í♥❣ t❤➥♥❣✱ ❦❤✐ ✤â t❛ ♥â✐ ❧➔ õ õ ởt t ỗ t t õ õ õ ỗ ❞✐➺♥✳ ✣à♥❤ ♥❣❤➽❛ ✶✳✺ ❈❤♦ C ⊂ Rn ❧➔ ♠ët t ỗ x C NC (x) = {w : w, y − x ≤ 0, ∀y ∈ C}, ✤÷đ❝ ❣å✐ ❧➔ ♥â♥ ♣❤→♣ t✉②➳♥ ✭♥❣♦➔✐✮ ❝õ❛ C t↕✐ x✳ ✐✐✮ ❚➟♣ −NC (x) = {w : w, y − x ≥ 0, ∀y ∈ C}, ✤÷đ❝ ❣å✐ ❧➔ ♥â♥ ♣❤→♣ t✉②➳♥ ✭tr♦♥❣✮ ❝õ❛ C t↕✐ x ỵ ỵ t t t ỗ t ỗ õ rộ ổ trò♥❣ ✈ỵ✐ t♦➔♥ ❜ë ❦❤ỉ♥❣ ❣✐❛♥ ✤➲✉ ❧➔ ❣✐❛♦ ❝õ❛ t➜t ❝↔ ❝→❝ ♥û❛ ❦❤æ♥❣ ❣✐❛♥ tü❛ ❝õ❛ ♥â✳ ✹ ✣à♥❤ ♥❣❤➽❛ ✶✳✻ ❈❤♦ ❤❛✐ t➟♣ C ✈➔ D ❦❤→❝ ré♥❣✱ t❛ ♥â✐ s✐➯✉ ♣❤➥♥❣ aT x = α t→❝❤ C ✈➔ D ♥➳✉ aT x ≤ α ≤ aT y, ∀a ∈ C, y ∈ D ❚❛ ♥â✐ s✐➯✉ ♣❤➥♥❣ aT x = α t→❝❤ ❝❤➦t C ✈➔ D ♥➳✉ aT x < α < aT y, ∀a ∈ C, y ∈ D ❚❛ ♥â✐ s✐➯✉ ♣❤➥♥❣ aT x = α t→❝❤ ♠↕♥❤ C ✈➔ D ♥➳✉ sup aT x < α < inf aT y, ∀a ∈ C, y D xC yD ỵ ỵ t C D t ỗ ❦❤→❝ ré♥❣ tr♦♥❣ Rn s❛♦ ❝❤♦ C ∩ D = ∅✳ ❑❤✐ ✤â ❝â ♠ët s✐➯✉ ♣❤➥♥❣ t→❝❤ C ✈➔ D ỵ ỵ t C D t ỗ õ rộ tr Rn s❛♦ ❝❤♦ C ∩ D = ∅✳ ●✐↔ sû ➼t ♥❤➜t ♠ët tr♦♥❣ ❤❛✐ t➟♣ ❧➔ t➟♣ ❝♦♠♣❛❝t✳ ❑❤✐ ✤â✱ ❤❛✐ t➟♣ ♥➔② ❝â t❤➸ t→❝❤ ♠↕♥❤ ✤÷đ❝ ❜ð✐ ởt s ỗ C Rn t ỗ f : C R ❦➼ ❤✐➺✉ ❞♦♠f = {x ∈ C : f (x) < +∞}, ❡♣✐f = {(x, α) ∈ C × R : f (x) ≤ α} ✣à♥❤ ♥❣❤➽❛ ✶✳✼ ❚➟♣ ❞♦♠f ✤÷đ❝ ❣å✐ ❧➔ ♠✐➲♥ ❤ú✉ ❤✐➺✉ ❝õ❛ f ✳ ❚➟♣ f ữủ tr ỗ t f ❇➡♥❣ ❝→❝❤ ✤➦t f (x) = +∞ ♥➳✉ x ∈ / C ✱ t❛ ❝â t❤➸ ❝♦✐ f ①→❝ ✤à♥❤ tr➯♥ t♦➔♥ ❦❤æ♥❣ ❣✐❛♥✳ ❑❤✐ ✤â✱ t❛ ❝â ❞♦♠f = {x ∈ Rn : f (x) ≤ +∞}, ❡♣✐f = {(x, α) ∈ Rn × R : f (x) ≤ α} ✺ ✣à♥❤ ♥❣❤➽❛ ✶✳✽ ❈❤♦ C ⊂ Rn✱ C = t ỗ f : C [, +] õ f ỗ tr C f t ỗ tr Rn+1 tr tữỡ ữỡ ợ x, y C, (0, 1) t❛ ❝â f [λx + (1 − λ)y] ≤ λf (x) + (1 − λ)f (y) ◆❤➟♥ ①➨t ✶✳✶ ❱➲ ♠➦t ❤➻♥❤ ❤å❝✱ ✤÷í♥❣ ❝♦♥❣ ❜✐➸✉ ❞✐➵♥ ♠ët ỗ tọ t t s ❦❤æ♥❣ ♥➡♠ tr➯♥ ✤♦↕♥ t❤➥♥❣ ♥è✐ ❜➜t ❦ý ❤❛✐ ✤✐➸♠ tở ữớ ổ ữợ t t t↕✐ ❜➜t ❦ý ✤✐➸♠ ♥➔♦ t❤✉ë❝ ✤÷í♥❣ ❝♦♥❣✳ ❱➲ ♠➦t t t tr õ t ữợ ❞↕♥❣ ❜➜t ✤➥♥❣ t❤ù❝ s❛✉ f (a) + f (a)(x − a) ≤ f (x) ≤ f (a) + f (b) − f (a) (x − a) b−a ✭✶✳✶✮ ✣à♥❤ ♥❣❤➽❛ ✶✳✾ ❈❤♦ C ⊂ Rn✱ C = ∅ ❧➔ t ỗ f : Rn [, +] ữủ ỗ t tr C f [x + (1 − λ)y] < λf (x) + (1 − λ)f (y), ∀x, y ∈ C, ∀λ ∈ (0, 1) ✐✐✮ ❍➔♠ f : Rn → [−∞, +∞] ✤÷đ❝ ❣å✐ ỗ tr C ợ số > ♥➳✉ ✈ỵ✐ ♠å✐ x, y ∈ C, ✈ỵ✐ ♠å✐ λ ∈ (0, 1) f [λx + (1 − λ)y] ≤ λf (x) + (1 − λ)f (y) − ηλ(1 − λ) x − y ✻ ✐✐✐✮ ❍➔♠ f : Rn → [−∞, +∞] ✤÷đ❝ ❣å✐ ó tr C f ỗ tr➯♥ C ✳ ▼➺♥❤ ✤➲ ✶✳✷ ▼ët ❤➔♠ f : C R ỗ tr C ❝❤➾ ❦❤✐ ✈ỵ✐ ♠å✐ x, y ∈ C ✱ ✈ỵ✐ ♠å✐ α, β t❤ä❛ ♠➣♥ f (x) < α, f (y) < β ✱ ✈ỵ✐ ♠å✐ sè λ ∈ [0, 1] t❛ ❝â f [λx + (1 − λ)y] ≤ λα + (1 − λ)β ❱➼ ❞ö ✶✳✶ ▼ët sè ỗ ||x|| ởt ỗ tr Rn tr õ x Rn C Rn t ỗ ❦❤→❝ ré♥❣✱ ❤➔♠ ❝❤➾ ❝õ❛ C ✱ ✤÷đ❝ ✤à♥❤ ♥❣❤➽❛   0 ♥➳✉ x ∈ C δC (x) := + x /C ởt ỗ C Rn t ỗ rộ ❤➔♠ tü❛ ❝õ❛ C ✱ ✤÷đ❝ ✤à♥❤ ♥❣❤➽❛ SC (x) := sup y, x yC ởt ỗ C Rn t ỗ rộ ❦❤♦↔♥❣ ❝→❝❤ ✤➳♥ t➟♣ C ✱ ✤÷đ❝ ✤à♥❤ ♥❣❤➽❛ dC (x) := x − y y∈C ❧➔ ♠ët ❤➔♠ ỗ f ữủ ❝❤➼♥❤ t❤÷í♥❣ ♥➳✉ ❞♦♠f = ∅ ✈➔ f (x) > ợ x f ữủ ❣å✐ ❧➔ ❤➔♠ ✤â♥❣ ♥➳✉ ❡♣✐f ❧➔ t➟♣ ✤â♥❣ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ Rn+1 ✳ ✼ ❤❛② F (t) ❧➔ ❤➔♠ ỗ ổrt ổ tự tr t ❝â ✤→♥❤ ❣✐→ F (t) ≤ F (0) ❚❤❛② F (t) = u(t) T −t T t · F (T ) T , ∀t ∈ [0, T ) tr♦♥❣ ✭✷✳✷✵✮ ✈➔ sû ❞ö♥❣ ✤✐➲✉ ❦✐➺♥ ❜❛♥ ✤➛✉ ✭✷✳✶✺✮ ✈➔ ✤✐➲✉ ❦✐➺♥ ❝✉è✐ ✭✷✳✶✻✮ t❛ ♥❤➟♥ ✤÷đ❝ ✤→♥❤ ❣✐→ s❛✉ u(t) ≤ u0 (x) 2(1−t/T ) · u(T ) 2t/T , ∀t ∈ [0, T ) ✭✷✳✷✹✮ ❚➼♥❤ ❝❤➜t ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ❣✐→ trà ❜✐➯♥ ❜❛♥ ✤➛✉ ✭✷✳✶✸✮✕✭✷✳✶✻✮ ❝â t❤➸ ✤÷đ❝ s✉② r❛ tø ✤→♥❤ ❣✐→ ✭✷✳✷✸✮ ✈➔ rữợ t ú t õ t t r ♥➳✉ ❤➔♠ F (t) t❤ä❛ ♠➣♥ ❜➜t ✤➥♥❣ t❤ù❝ ✭✷✳✷✸✮ ✈➔ F ❜à tr✐➺t t✐➯✉ t↕✐ ♠ët ✤✐➸♠ ♥➔♦ ✤â t1 ∈ [0, T ] t❤➻ tø t➼♥❤ ❧✐➯♥ tö❝ F t õ t s r F (t) ỗ ♥❤➜t ❜➡♥❣ ✈ỵ✐ ♠å✐ t ∈ [0, T ]✳ ❚ø ✤â✱ t❛ s✉② r❛ t➼♥❤ ❞✉② ♥❤➜t ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ❈❛✉❝❤② t✉②➳♥ t➼♥❤ ✭✷✳✶✸✮✕✭✷✳✶✻✮✳ ✣➸ tr↔ ❧í✐ ❝❤♦ ❝➙✉ ❤ä✐ ✈➲ t➼♥❤ ê♥ ✤à♥❤ ❝õ❛ ♥❣❤✐➺♠ t❛ ❣✐↔ sû u1 (x, t) ✈➔ u2 (x, t) ❧➔ ❝→❝ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ s❛✉ uit = uixx , ≤ x ≤ 1, < t ≤ T, ui (0, t) = ui (1, t) = 0, < t ≤ T, ui (x, 0) = ui0 (x), ≤ x ≤ 1, ui (x, T ) = uiT (x), i = 1, ✣➦t u = u1 − u2 t❤➻ u s➩ ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭✷✳✶✸✮✕✭✷✳✶✻✮ ợ tữỡ ự u0 (x) = u10 (x) − u20 (x)✳ ❑❤✐ ✤â ❜➜t ✤➥♥❣ t❤ù❝ ✭✷✳✷✹✮ s➩ ❝❤♦ t❛ ❦❤æ♥❣ ❣✐❛♥ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✤➸ s❛♦ ❝❤♦ u0 ♥❤ä s➩ ❦➨♦ t❤❡♦ u(t) ❝ô♥❣ ♥❤ä ✈ỵ✐ t ∈ [0, T ) ❤ú✉ ❤↕♥✳ ❚✉② ♥❤✐➯♥✱ ✤✐➲✉ ❦✐➺♥ u0 (x) ♥❤ä ❧➔ ❦❤æ♥❣ ✤õ ✤➸ t➼❝❤ u0 (x) 2(1−t/T ) · u(T ) 2t/T s➩ ♥❤ä ✈ỵ✐ t ∈ [0, T )✳ ❉♦ ✤â✱ ✤➸ ❝â t➼♥❤ ♣❤ö t❤✉ë❝ ❧✐➯♥ tö❝ ❝õ❛ ♥❣❤✐➺♠ ✈➔♦ ❞ú ❦✐➺♥ ❜❛♥ ✤➛✉ ❝❤ó♥❣ t❛ ❝➛♥ ♠ët ❤↕♥ ❝❤➳ ❝❤♦ ợ t t t ỵ ❤✐➺✉ M ❧➔ t➟♣ t➜t ❝↔ ❝→❝ ❤➔♠ ϕ(x, t)✱ ❧✐➯♥ tư❝ tr♦♥❣ Ω = [0, 1] × [0, T ] ✈➔ ✈ỵ✐ ♠é✐ t ∈ (0, T ) ❝è ✤à♥❤ t❤➻ ϕ(x, t) ❦❤↔ ✈✐ ❧✐➯♥ tö❝ ❤❛✐ ❧➛♥ t❤❡♦ ❜✐➳♥ x✱ ✈ỵ✐ ♠é✐ x ∈ [0, 1] t❤➻ ϕ(x, t) ❦❤↔ ✈✐ ❧✐➯♥ tö❝ t❤❡♦ ❜✐➳♥ t ∈ (0, T ) ✈➔ t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❜à ❝❤➦♥ ϕ(T ) ✭✷✳✷✺✮ ≤ M 2, ✈ỵ✐ M ❧➔ ❤➡♥❣ sè✳ ❚❛ t❤➜② r➡♥❣✱ tr♦♥❣ ❧ỵ♣ ❤➔♠ u ∈ M t❤➻ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✭✷✳✶✸✮✕✭✷✳✶✻✮ s➩ ♣❤ö t❤✉ë❝ tử t oăr ỳ tr L2 (0, 1) ✈ỵ✐ t ∈ [0, T )✳ ❑❤✐ õ t õ t q s ỵ ởt ♥❣❤✐➺♠ ❜➜t ❦ý ❝õ❛ ❜➔✐ t♦→♥ ❣✐→ trà ❜✐➯♥ ❜❛♥ ✤➛✉ ✭✷✳✶✸✮✕✭✷✳✶✻✮ t❤✉ë❝ ❧ỵ♣ M ✤➲✉ t❤ä❛ ♠➣♥ ❜➜t ✤➥♥❣ t❤ù❝ u(t) ≤ M 2t/T u0 (x) 2(1−t/T ) ỵ r t q tr õ ỵ tỹ t số M õ t ữủ t t tứ ỳ t ỵ ❝õ❛ ❜➔✐ t♦→♥ ❦❤✐ t❛ ✤✐ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ ♠æ ❤➻♥❤ t♦→♥ ❤å❝ ❝õ❛ ♥â✳ ❚r♦♥❣ ♥❤✐➲✉ ❜➔✐ t♦→♥ ✈➟t ỵ t t õ t ữ r số M ✱ ✈➼ ❞ư ♥❤÷ ♥➳✉ ♥❣❤✐➺♠ u ❜✐➸✉ ❞✐➵♥ ♥❤✐➺t ✤ë ❝õ❛ ❝õ❛ ♠ët ❜➔✐ t♦→♥ t❤ü❝ t➳ t❤➻ t❛ õ t ữ r ợ tr u ❦❤✐ ✤â✱ t❛ ❦❤ỉ♥❣ ♥❤➜t t❤✐➳t ♣❤↔✐ ❝â ❞↕♥❣ t÷í♥❣ ♠✐♥❤ ❝õ❛ ♥❣❤✐➺♠✳ ▼➦t ❦❤→❝✱ ✤➸ ♥❣❤✐➯♥ ❝ù✉ ❞→♥❣ ✤✐➺✉ ❝õ❛ ♥❣❤✐➺♠✱ tø ❜➜t ✤➥♥❣ t❤ù❝ ✭✷✳✷✸✮ t❛ ❝â ❣✐ỵ✐ ữợ F (t) ữủ F (t) ≥ F (0) ❡①♣ tF (0) F (0) ✭✷✳✷✼✮ ❚❤❛② ❝→❝ ❞ú ❦✐➺♥ ❝â ✤÷đ❝ tø ♣❤➛♥ tr➯♥ t❛ ♥❤➟♥ ✤÷đ❝ u(t) ≥ u0 (x) ❡①♣ 2t ux u0 ✭✷✳✷✽✮ ❱➻ ✈➟②✱ ♥➳✉ u(t) ①→❝ ✤à♥❤ tr➯♥ [0, ∞) t❤➻ u(t) s➩ t➠♥❣ t❤❡♦ ❤➔♠ sè ♠ô✳ ❱➔ ❞♦ ✤â✱ ❜➜t ✤➥♥❣ t❤ù❝ ✭✷✳✷✽✮ ❝❤♦ t❛ ✤→♥❤ ❣✐→ ✈➲ tè❝ ✤ë t➠♥❣ ❝õ❛ ♥❣❤✐➺♠ u(x, t)✳ ✷✼ ✷✳✷✳ Ù♥❣ ❞ö♥❣ tr♦♥❣ ❜➔✐ t♦→♥ ❈❛✉❝❤② ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ▲❛♣❧❛❝❡ ✷✳✷✳✶✳ P❤÷ì♥❣ tr➻♥❤ ▲❛♣❧❛❝❡ ❚r♦♥❣ ♠ư❝ ♥➔② ❝❤ó♥❣ tỉ✐ ①➨t ❜➔✐ t♦→♥ ❈❛✉❝❤② ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ▲❛♣❧❛❝❡✳ ✣➸ ✤ì♥ ❣✐↔♥✱ ❝❤ó♥❣ tỉ✐ ①➨t ❜➔✐ t♦→♥ tr♦♥❣ ♠✐➲♥ t❤✉ë❝ ❦❤æ♥❣ ❣✐❛♥ R2 ✭①❡♠ ❬✹❪✮✳ ❈❤♦ R2 ữủ ợ < x < X, < y < 1✱ ✈ỵ✐ X < + số ố trữợ t t ❜✐➯♥ ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ▲❛♣❧❛❝❡ tr♦♥❣ ♠✐➲♥ Ω uxx + uyy = 0, ✭✷✳✷✾✮ (x, y) ∈ Ω ✈ỵ✐ ✤✐➲✉ ❦✐➺♥ ❜✐➯♥ ❉✐r✐❝❤❧❡t u(x, 0) = u(x, 1) = 0, 0 ợ E ữủ ❜ð✐ ✭✷✳✸✻✮✳ ❚r♦♥❣ ♣❤➛♥ ❝✉è✐ ❝õ❛ ♠ư❝✱ ❝❤ó♥❣ tỉ✐ t❤↔♦ ❧✉➟♥ ✈➲ ♠ët ❦➳t q✉↔ t÷ì♥❣ tü ❝â t❤➸ ♥❤➟♥ ✤÷đ❝ ❝❤♦ ♠ët ❞↕♥❣ ❜➔✐ t♦→♥ tê♥❣ q✉→t ❤ì♥ ✭①❡♠ ❬✺❪✮✳ ✸✷ ❈❤♦ H ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❍✐❧❜❡rt t❤ü❝ ✈ỵ✐ t ổ ữợ , ã sỷ D ⊂ H ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❝♦♥ t✉②➳♥ t➼♥❤ trò ♠➟t tr♦♥❣ H ❀ M ✈➔ N ❧➔ ❝→❝ t♦→♥ tû t✉②➳♥ t➼♥❤ tø D ✈➔ H ✳ ❳➨t ❜➔✐ t♦→♥ ✤✐➲✉ ❦✐➺♥ ❜❛♥ ✤➛✉ M d2 u + N u = 0, dx2 ✭✷✳✹✸✮ x ∈ [0, X] ✈ỵ✐ ✤✐➲✉ ❦✐➺♥ du (0) = v0 dx u(0) = u0 , ✭✷✳✹✹✮ ✣➸ ✤ì♥ ❣✐↔♥ t❛ ❣✐↔ sû r➡♥❣ M ✈➔ N ❧➔ ❝→❝ t♦→♥ tû ❦❤ỉ♥❣ ♣❤ư t❤✉ë❝ ✈➔♦ t❤❛♠ sè x ✈➔ t❤ä❛ ♠➣♥ ❝→❝ ❣✐↔ t❤✐➳t s❛✉ ✐✮ M ❧➔ t♦→♥ tû ✤è✐ ①ù♥❣✱ ①→❝ ✤à♥❤ ❞÷ì♥❣❀ ✐✐✮ N ❧➔ t♦→♥ tû ✤è✐ ①ù♥❣❀ ✐✐✐✮ ♥❣❤✐➺♠ u ❝õ❛ ❜➔✐ t♦→♥ t❤✉ë❝ ❧ỵ♣ C ([0, X], H)✳ ✣➸ t❤✉➟♥ t✐➺♥ t❛ ✤✐ ①➨t ♥❣❤✐➺♠ ②➳✉ ❝õ❛ ❜➔✐ t♦→♥ tr➯♥ ❜➡♥❣ ❝→❝❤ ♥❤➙♥ ❤❛✐ ✈➳ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✹✸✮ ✈ỵ✐ ❤➔♠ t❤û ϕ ∈ C ([0, X], H) t❛ ❝â ϕ(x), M d2 u + ϕ(x), N u = ϕ, dx2 ❱➻ M ❧➔ t♦→♥ tû ✤è✐ ①ù♥❣ ♥➯♥ d2 u M ϕ(x), + ϕ(x), N u = ϕ, dx ▲➜② t➼❝❤ ♣❤➙♥ ❤❛✐ ✈➳ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ tr➯♥ t❛ ✤÷đ❝ x d2 u M ϕ(η), dη + dη x ϕ(η), N u dη = 0 ❙û ❞ö♥❣ ❝æ♥❣ t❤ù❝ t➼❝❤ ♣❤➙♥ tø♥❣ ♣❤➛♥ ✈➔ ✤✐➲✉ ❦✐➺♥ ❜❛♥ ✤➛✉ x du dx (0) = v0 t❛ ❝â x d2 u du x du M ϕ(η), dη = M ϕ(η), d(M ϕ(η))dη − dη dη η=0 dη x du du dϕ du = M ϕ(x), (x) − M ϕ(0), (0) − M , dη dx dx dη dη x du dϕ du = M ϕ(x), (x) − M ϕ(0), v0 − M , dη dx dη dη ✸✸ ❚❤❛② ✈➔♦ ♣❤÷ì♥❣ tr➻♥❤ tr➯♥ t❛ ✤÷đ❝ du M ϕ(x), (x) = M ϕ(0), v0 + dx x M dϕ du , − ϕ, N u dη dη dη ✭✷✳✹✺✮ ✣➦t E(x) = M du du , + u(x), N u(x) dx dx ❚❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ♥➠♥❣ ❧÷đ♥❣ t❛ ❝â E(x) = M du du , + u, N u dx dx ≤ E(0) ✭✷✳✹✻✮ ❑❤✐ ✤â✱ ✈ỵ✐ ♠é✐ ♥❣❤✐➺♠ ❝ê ✤✐➸♥ t❤ä❛ ♠➣♥ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✹✺✮ ❝ơ♥❣ s➩ t❤ä❛ ♠➣♥ ✭✷✳✹✻✮ ✈ỵ✐ ❞➜✉ ❜➡♥❣✳ ❈❤ó♥❣ t❛ s➩ sû ởt t tự ỗ ổrt ✤➸ ♥❣❤✐➯♥ ❝ù✉ t➼♥❤ ❞✉② ♥❤➜t ✈➔ t➼♥❤ ♣❤ö t❤✉ë❝ ❧✐➯♥ tö❝ ✈➔♦ ❞ú ❦✐➺♥ ❜❛♥ ✤➛✉ ❝õ❛ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ✤❛♥❣ ①➨t✳ ✣➸ ✤↕t ✤÷đ❝ ♠ư❝ ✤➼❝❤ ✤â✱ t❛ ①➨t ❤➔♠ G(x) = u, M u + β(x + x0 )2 , ✭✷✳✹✼✮ tr♦♥❣ ✤â β ✈➔ x0 ❧➔ ❝→❝ ❤➡♥❣ sè ❦❤ỉ♥❣ ➙♠ ✤÷đ❝ ❝❤å♥ ♣❤ò ❤đ♣✳ ✣↕♦ ❤➔♠ ❤❛✐ ✈➳ ❝õ❛ ✭✷✳✹✼✮ t❛ ♥❤➟♥ ✤÷đ❝ G (x) = M u, ux + 2β(x + x0 ) ⑩♣ ❞ö♥❣ ✭✷✳✹✺✮✱ t❤❛② ϕ(x) = u(x) ✈➔ sû ❞ư♥❣ ✤✐➲✉ ❦✐➺♥ ❜❛♥ ✤➛✉ u(0) = u0 t❛ ✤÷đ❝ G (x) = M u, ux + 2β(x + x0 ) x = M u0 , v0 + M du du , − u, N u dη + 2β(x + x0 ) dη dη ✭✷✳✹✽✮ ❚✐➳♣ tư❝ ✤↕♦ ❤➔♠ ❤❛✐ ✈➳ ❝õ❛ ✭✷✳✹✽✮ t❛ ♥❤➟♥ ✤÷đ❝ G (x) = M du du , − u, N u dx dx ✸✹ + 2β ✭✷✳✹✾✮ ❇➡♥❣ ❝→❝❤ sû ❞ư♥❣ ✭✷✳✹✻✮ ❦❤✐ u(x) ❧➔ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✹✺✮ ✭tù❝ ❧➔ ❦❤✐ ✭✷✳✹✻✮ ①↔② r❛ ❞➜✉ ❜➡♥❣✮ t❛ õ t t ữợ du du , − u, N u + 2β dx dx du du du du =4 M , + 4β − 2β + M , + u, N u dx dx dx dx G (x) = M ✭✷✳✺✵✮ = M ux , ux + 4β − (2β + 4E(0)) ❉♦ ✤â✱ t❛ ❝â GG − (G )2 = u, M u + β(x + x0 )2 M ux , ux + 4β − (2β + 4E(0)) − M u, ux + 2β(x + x0 ) = M u, u + β(x + x0 )2 M ux , ux + β − M u, ux + β(x + x0 ) ✭✷✳✺✶✮ − 2β + 4E(0) G(x) ❱➻ M ①→❝ ✤à♥❤ ❞÷ì♥❣ ✈➔ t❤❡♦ ❜➜t ✤➥♥❣ t❤ù❝ ❙❝❤✇❛r③✱ t❛ ❝â M u, M +β(x+x0 )2 M ux , ux +β −4 M u, ux +β(x+x0 ) ❚❤➟t ✈➟②✱ ✤➸ ❝❤ù♥❣ ♠✐♥❤ ❜➜t ✤➥♥❣ t❤ù❝ tr t ỵ u, v M t tỷ ✤è✐ ①ù♥❣✱ ①→❝ ✤à♥❤ ❞÷ì♥❣ ♥➯♥ , ∗ ∗ ≥ ✭✷✳✺✷✮ := M u, v ✳ ❱➻ ❧➔ ♠ët t ổ ữợ tr ổ rt H →♣ ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ❙❝❤✇❛r③✱ t❛ ❝❤å♥ u ˆ ❧➔ ✈❡❝tì trü❝ ❣✐❛♦ ✈ỵ✐ ❤➺ ✈❡❝tì {u, ux } ✈➔ u ˆ = 1✳ ✣➦t ❝→❝ ✈❡❝tì u (x) = u(x) + v (x) = ux (x) + β(x + x0 )ˆ u; β uˆ ❱➻ ❤➺ ✈❡❝tì u ˆ(x) trü❝ ❣✐❛♦ ✈ỵ✐ ❤➺ {ut (x), uˆ(x)} ✈➔ uˆ = ♥➯♥ t❛ ❝â u ,u ∗ = u, u v ,v ∗ = ux , ux u ,v ∗ = u, ux ∗ + β(x + x0 )2 = M u, u + β(x + x0 )2 ; ∗ ∗ + β = M ux , ux + β; + β(x + x0 ) = M u, ux + β(x + x0 ) ✸✺ ▼➔ t❛ ❧↕✐ ❝â u ,u ∗ · v ,v ∗ ≥ | u ,v ∗| ❉♦ ✤â✱ t❛ ❝â ✭✷✳✺✷✮✳ ❱➟②✱ s✉② r❛ GG − (G )2 ≥ − 2β + 4E(0) G(x) ✭✷✳✺✸✮ ❚ø ❜➜t ✤➥♥❣ t❤ù❝ ✭✷✳✺✸✮ ❝❤ó♥❣ t❛ ❝â t❤➸ ❝❤➾ r❛ ❝→❝ ❦➳t q✉↔ ✈➲ sü ❞✉② ♥❤➜t✱ ❞→♥❣ ✤✐➺✉ ✈➔ sü ♣❤ö t❤✉ë❝ ❧✐➯♥ tö❝ ❝õ❛ ♥❣❤✐➺♠✳ ✶✳ ❙ü ❞✉② ♥❤➜t ♥❣❤✐➺♠✳ Ð ✤➙②✱ ❝❤ó♥❣ t❛ ❝➛♥ ❝❤➾ r❛ r➡♥❣ tø u0 = v0 = ❦➨♦ t❤❡♦ u(x) ≡ 0✳ ❚❤➟t ✈➟②✱ tr♦♥❣ tr÷í♥❣ ❤đ♣ ♥➔② t❛ s➩ ❝❤å♥ β = 0✳ ❚ø E(0) = t❛ ❝â ✭✷✳✺✹✮ GG − (G )2 ≥ 0, ✈➔ tø ❜➜t ✤➥♥❣ t❤ù❝ ✭✶✳✶✸✮✱ t❛ s✉② r❛ G(x) ≤ G(0)1−x/X G(X)x/X ✭✷✳✺✺✮ ❱➻ G(0) = ♥➯♥ G(x) ♣❤↔✐ ❜➡♥❣ ✈ỵ✐ ♠å✐ x ∈ [0, X]✳ ❱➻ M ❧➔ t♦→♥ tû ①→❝ ✤à♥❤ ❞÷ì♥❣ ♥➯♥ t❛ s✉② r❛ u ≡ tr♦♥❣ ✤♦↕♥ [0, X]✳ ✷✳ ❉→♥❣ ✤✐➺✉ ❝õ❛ ♥❣❤✐➺♠✳ ●✐↔ sû X = ∞ ✈➔ ❝❤ó♥❣ t❛ ✤✐ ♥❣❤✐➯♥ ❝ù✉ ❞→♥❣ ✤✐➺✉ ❝õ❛ ♥❣❤✐➺♠ ❦❤✐ x → ∞✳ ❑❤✐ ✤â t❛ s➩ ①➨t ❤❛✐ tr÷í♥❣ ❤đ♣ E(0) < ✈➔ E(0) > 0✱ tr÷í♥❣ ❤đ♣ E(0) = ❦❤→ ✤➦❝ ❜✐➺t✱ ❜↕♥ ✤å❝ ❝â t❤➸ t❤❛♠ ❦❤↔♦ tr♦♥❣ ♠ët ❜➔✐ ❜→♦ ❝õ❛ ❘✳❏✳ ❑♥♦♣s ✈➔ ▲✳❊✳P❛②♥❡ ✤÷đ❝ ✤➠♥❣ tr➯♥ t↕♣ ❝❤➼ ❆r❝❤✳ ❘❛t✐♦♥❛❧ ▼❡❝❤✳ ❆♥❛❧✳ ♥➠♠ ✶✾✼✶✳ ❚r♦♥❣ ❦❤✉ỉ♥ ❦❤ê ❝õ❛ ❧✉➟♥ ✈➠♥✱ ❝❤ó♥❣ tỉ✐ ❦❤ỉ♥❣ ①➨t ✤➳♥ tr÷í♥❣ ❤đ♣ ♥➔②✳ ✭✐✮ E(0) < 0✳ ❚r♦♥❣ tr÷í♥❣ ❤đ♣ ♥➔② t❛ ❝❤å♥ β = −2E(0) ✈➔ t❛ ❝ô♥❣ ❞➝♥ ✤➳♥ ❜➜t ✤➥♥❣ t❤ù❝ ✭✷✳✺✹✮✳ ❉♦ ✤â✱ tø ❜➜t ✤➥♥❣ t❤ù❝ ✭✶✳✶✷✮ t❛ ❝ô♥❣ ❝â ✤→♥❤ ❣✐→ ữợ G(x) ữ s G(x) G(0) ❡①♣ G (0) x , G(0) ✭✷✳✺✻✮ ❤❛② u, M u + β(x + x0 ) ≥ u0 , M u0 + βx20 ✸✻ ❡①♣ 2x M u0 , v0 + βx0 u0 , M u0 + βx20 ✭✷✳✺✼✮ ❚❛ t❤➜② r➡♥❣✱ ♥➳✉ M u0 , v0 ❜à ❝❤➦♥ t❤➻ t❛ ❧✉ỉ♥ ❝â t❤➸ ❝❤å♥ ✤÷đ❝ x0 ✤õ ợ số ụ tr số ữỡ õ t õ t q s ỵ ởt t ý t tỗ t ✈ỵ✐ ♠å✐ x ✈➔ ♥➳✉ ✤✐➲✉ ❦✐➺♥ ❜❛♥ ✤➛✉ t❤ä❛ ♠➣♥ E(0) < t❤➻ ♥❣❤✐➺♠ ✤â ♣❤↔✐ t➠♥❣ t❤❡♦ ❤➔♠ sè ♠ơ ✭t❤❡♦ ❝❤✉➞♥✮ ❦❤✐ x ❞➛♥ tỵ✐ ∞✳ ❇➯♥ ❝↕♥❤ ✤â✱ ❦❤✐ ❝â ✭✷✳✺✺✮ ✈ỵ✐ β = −2E(0) t❤➻ ♥❣❤✐➺♠ u(x) s➩ t❤✉ë❝ ❧ỵ♣ ❝→❝ ❤➔♠ ♠➔ ❝❤✉➞♥ ❝õ❛ ♥â ❜à ❝❤➦♥ t↕✐ x = x ˆ✳ ❑❤✐ ✤â✱ tr♦♥❣ ❧ỵ♣ ❤➔♠ ♥➔② t❤➻ ♥❣❤✐➺♠ u(x) ♣❤ư t❤✉ë❝ tử oăr t ỳ t♦→♥ ✈ỵ✐ ≤ x ≤ x ˆ✳ ✭✐✐✮ E(0) > 0✳ ❚ø ✭✷✳✺✸✮✱ t❛ s✉② r❛ GG − (G )2 ≥ − [2β + 4E(0)]G2 β(x + x0 )2 ✭✷✳✺✽✮ ❈❤♦ β r➜t ❧ỵ♥✱ ✤➦t ε = 4E(0)/β t❤➻ t❛ ❝â t❤➸ ✈✐➳t ❧↕✐ ❜➜t ✤➥♥❣ t❤ù❝ tr➯♥ ữợ GG (G )2 (2 + )(x + x0 )−2 G2 , ✭✷✳✺✾✮ ❤❛② G(x) (x + x0 )2+ε ❧♦❣ ✭✷✳✻✵✮ ≤ ❑❤✐ ✤â✱ t❛ t❤✉ ✤÷đ❝ ❤❛✐ ❦➳t q✉↔ s❛✉ G(x)(x + x0 ) −(2+ε) ≤ −(2+ε) G(0)x0 −(2+ε) G(x)(x + x0 )−(2+ε) ≥ G(0)x0 1−x/x∗ ∗ ∗ G(x )(x + x0 ) ❡①♣ x x/x∗ −(2+ε) G (0) (2 + ε) − G(0) x0 , , ✭✷✳✻✶✮ ✭✷✳✻✷✮ ð ✤➙②✱ ❜➜t ✤➥♥❣ t❤ù❝ ✭✷✳✻✶✮ ❝❤➾ ✤ó♥❣ ❦❤✐ ≤ x ≤ x∗ ✳ ❚ø ✭✷✳✻✶✮ t❛ t❤➜② r➡♥❣ ♥➳✉ lim ❧♦❣ x→∞ G(x) (x∗ )−1 = 0, 2+ε (x + x0 ) ✭✷✳✻✸✮ t❤➻ G(x) ≤ G(0) (x + x0 )2+ε x2+ε ❍❛② ♥â✐ ❝→❝❤ ❦❤→❝✱ t❛ ❝â ❦➳t q✉↔ s❛✉ ✸✼ ỵ ởt t ý t tỗ t ợ x ✤✐➲✉ ❦✐➺♥ ❜❛♥ ✤➛✉ t❤ä❛ ♠➣♥ E(0) > t❤➻ ❤♦➦❝ ❧➔ ♥❣❤✐➺♠ ♣❤↔✐ ♣❤→t tr✐➸♥ t❤❡♦ ❤➔♠ sè ♠ô ✭t❤❡♦ ❝❤✉➞♥✮ ❦❤✐ x ❞➛♥ tỵ✐ ∞ ❤♦➦❝ ❧➔ u t➠♥❣ ❦❤ỉ♥❣ ♥❤❛♥❤ ❤ì♥ O(t1+ε ) ✈ỵ✐ ε ♥❤ä tò② þ✳ ❈ơ♥❣ ♥❤÷ tr÷í♥❣ ❤đ♣ ✭✐✮✱ t❛ ♥❤➟♥ t❤➜② r➡♥❣ tø ❜➜t ✤➥♥❣ t❤ù❝ ✭✷✳✻✶✮ t❤➻ tr♦♥❣ ❧ỵ♣ ♥❣❤✐➺♠ ♠➔ ❤➔♠ G(x) ❜à ❝❤➦♥ t❤➻ ♥❣❤✐➺♠ ②➳✉ ❝õ❛ ❜➔✐ t♦→♥ tở tử oăr t ỳ ❦✐➺♥ ❝õ❛ ❜➔✐ t♦→♥ ✈ỵ✐ ≤ x ≤ x∗ ✳ ✸✽ ❑➌❚ ▲❯❾◆ ▲✉➟♥ ✈➠♥ tr➻♥❤ ❜➔② ❧↕✐ ♣❤÷ì♥❣ ỗ ổrt ởt ữỡ ữủ sỷ ❞ö♥❣ ♥❤✐➲✉ tr♦♥❣ ✈✐➺❝ ê♥ ✤à♥❤ ❤â❛ ❝→❝ ❜➔✐ t♦→♥ ✤➦t ❦❤ỉ♥❣ ❝❤➾♥❤ tr♦♥❣ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣✳ ❈ư t❤➸ ✲ ❚r♦♥❣ ❝❤÷ì♥❣ ✶✱ t→❝ ❣✐↔ tr➻♥❤ ❜➔② ❧↕✐ ữỡ ỗ ổrt r ữỡ ✷✱ t→❝ ❣✐↔ tr➻♥❤ ❜➔② ❧↕✐ ❤❛✐ ✈➼ ❞ö sû ữỡ ỗ ổrt õ t♦→♥✱ ✤â ❧➔ ❜➔✐ t♦→♥ ❈❛✉❝❤② ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ♣❛r❛❜♦❧✐❝ ♥❣÷đ❝ t❤í✐ ❣✐❛♥ ✈➔ ❜➔✐ t♦→♥ ❈❛✉❝❤② ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ▲❛♣❧❛❝❡✳ ✸✾ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❆✳ ❚✐➳♥❣ ❱✐➺t ❬✶❪ ◆❣✉②➵♥ ❚❤ø❛ ❍đ♣ ✭✷✵✵✻✮✱ ●✐→♦ tr➻♥❤ ♣❤÷ì♥❣ tr➻♥❤ ✤↕♦ ❤➔♠ r✐➯♥❣✱ ◆❳❇ ✣↕✐ ❤å❝ ◗✉è❝ ❣✐❛ ❍➔ ◆ë✐✳ ❬✷❪ ❚r➛♥ ❱ô ❚❤✐➺✉✱ ◆❣✉②➵♥ ❚❤à ❚❤✉ ❚❤õ② ✭✷✵✶✶✮✱ ●✐→♦ tr➻♥❤ tè✐ ÷✉ ♣❤✐ t✉②➳♥✱ ◆❳❇ ✣↕✐ ❤å❝ ◗✉è❝ ❣✐❛ ❍➔ ◆ë✐✳ ❇✳ ❚✐➳♥❣ ❆♥❤ ❬✸❪ ❑✳ ❆✳ ❆♠❡s ❛♥❞ ❇✳ ❙tr❛✉❣❤❛♥ ✭✶✾✾✼✮✱ ◆♦♥✕st❛♥❞❛r❞ ❛♥❞ ■♠♣r♦♣❡r❧② P♦s❡❞ Pr♦❜❧❡♠s✱ ❆❝❛❞❡♠✐❝ Pr❡ss✳ ❬✹❪ ❏✳ ◆✳ ❋❧❛✈✐♥ ❛♥❞ ❙✳ ❘✐♦♥❡r♦ ✭✶✾✾✻✮✱ ◗✉❛❧✐t❛t✐✈❡ ❊st✐♠❛t❡s ❢♦r P❛rt✐❛❧ ❉✐❢✲ ❢❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s✿ ❆♥ ■♥tr♦❞✉❝t✐♦♥✱ ❈❘❈ Pr❡ss✳ ❬✺❪ ▲✳ ❊✳ P❛②♥❡ ✭✶✾✼✺✮✱ ■♠♣r♦♣❡r❧② P♦s❡❞ Pr♦❜❧❡♠s ✐♥ P❛rt✐❛❧ ❉✐❢❢❡r❡♥t✐❛❧ ❊q✉❛✲ t✐♦♥s✱ ❙♦❝✐❡t② ♦❢ ■♥❞✉str✐❛❧ ❛♥❞ ❆♣♣❧✐❡❞ ▼❛t❤❡♠❛t✐❝s✱ P❤✐❧❛❞❡♥♣❤✐❛✱ P❡♥♥✲ s②❧✈❛♥✐❛✳ ✹✵ ... ĐẠI HỌC KHOA HỌC  - PHẠM LỆ QUYÊN VỀ PHƢƠNG PHÁP LỒI LƠGARIT VÀ MỘT VÀI ỨNG DỤNG Chun ngành: Tốn Ứng Dụng Mã số: 46 01 12 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS Bùi

Ngày đăng: 22/10/2019, 17:20

Mục lục

  • Bia L.V Khoa hoc.doc

    • ĐẠI HỌC THÁI NGUYÊN

    • VỀ PHƯƠNG PHÁP LỒI LÔGARIT

    • VÀ MỘT VÀI ỨNG DỤNG

    • LUẬN VĂN THẠC SĨ TOÁN HỌC

    • THÁI NGUYÊN - 2019

    • ĐẠI HỌC THÁI NGUYÊN

    • VỀ PHƯƠNG PHÁP LỒI LÔGARIT

    • VÀ MỘT VÀI ỨNG DỤNG

    • LUẬN VĂN THẠC SĨ TOÁN HỌC

    • NGƯỜI HƯỚNG DẪN KHOA HỌC

    • THÁI NGUYÊN - 2019

Tài liệu cùng người dùng

Tài liệu liên quan