1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập toán cao cấp part 3 ppsx

16 614 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 263,01 KB

Nội dung

7.2. Gi´o . iha . n h`am mˆo . tbiˆe ´ n 31 v`a c´ac hˆe . qua ’ cu ’ a (7.13) lim x→∞  1+ 1 x  x = e, (7.14) lim x→0 log a (1 + x) x = 1 lna , 0 <a=1, (7.15) lim x→0 a x − 1 x =lna, 0 <a=1. (7.16) C ´ AC V ´ IDU . V´ı du . 1. Su . ’ du . ng (ε −δ)-d i . nh ngh˜ıa gi´o . iha . nd ˆe ’ ch´u . ng minh r˘a ` ng lim x→−3 x 2 =9. Gia ’ i. Ta cˆa ` nch´u . ng minh r˘a ` ng ∀ε>0, ∃δ>0 sao cho v´o . i |x +3| <δth`ı ta c´o |x 2 − 9| <ε. Ta cˆa ` nu . ´o . clu . o . . ng hiˆe . u |x 2 − 9|. ta c´o |x 2 − 9| = |x −3||x +3|. Do th`u . asˆo ´ |x −3| khˆong bi . ch˘a . n trˆen to`an tru . csˆo ´ nˆen dˆe ’ u . ´o . clu . o . . ng t´ıch do . n gia ’ nho . n ta tr´ıch ra 1 - lˆan cˆa . ncu ’ adiˆe ’ m a = −3t´u . cl`a khoa ’ ng (−4; −2). V´o . imo . i x ∈ (−4; −2) ta c´o |x − 3| < 7v`adod´o |x 2 − 9| < 7|x +3|. V`ı δ-lˆan cˆa . ndiˆe ’ m a = −3[t´u . c l`a khoa ’ ng (−3 − δ; −3+δ)] khˆong d u . o . . cvu . o . . t ra kho ’ i ranh gi´o . icu ’ a 1-lˆan cˆa . n nˆen ta lˆa ´ y δ = min  1, ε 7  . Khi d ´ov´o . i0< |x +3| <δ⇒|x 2 − 9| <ε. Do vˆa . y lim x→−3 x 2 =9.  V´ı du . 2. Ch´u . ng minh r˘a ` ng lim x→2 √ 11 − x =3. Gia ’ i. Gia ’ su . ’ ε>0 l`a sˆo ´ du . o . ng cho tru . ´o . cb´e bao nhiˆeu t`uy ´y. Ta x´et bˆa ´ tphu . o . ng tr`ınh | √ 11 − x − 3| <ε. (7.17) 32 Chu . o . ng 7. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am sˆo ´ Ta c´o (7.17) ⇔−ε< √ 11 − x − 3 <ε⇔    √ 11 − x − 3 > −ε √ 11 − x − 3 <ε ⇔    x − 11 < −(3 − ε) 2 x − 11 > −(3 + ε) 2 ⇔    x − 2 < 6ε − ε 3 x − 2 > −(6ε + ε 2 ). V`ı6ε − ε 2 < |−(6ε + ε) 2 | =6ε + ε 2 nˆen ta c´o thˆe ’ lˆa ´ y δ(ε) l`a sˆo ´ δ  6ε − ε 2 .V´o . isˆo ´ δ d´o ta thˆa ´ yr˘a ` ng khi x tho ’ a m˜an bˆa ´ td˘a ’ ng th´u . c 0 < |x − 2| <δth`ı | √ 11 − x − 3| <εv`a lim x→2 √ 11 − x =3.  V´ı d u . 3. T´ınh c´ac gi´o . iha . n 1) lim x→2 2 x − x 2 x − 2 (vˆo di . nh da . ng 0 0 ); 2) lim x→ π 4 cotg2x · cotg  π 4 − x  (vˆo di . nh da . ng 0 ·∞); 3) lim x→∞  e 1 x + 1 x  x (vˆo di . nh da . ng 1 ∞ ). Gia ’ i 1) Ta c´o 2 x − x 2 x −2 = 2 x −2 2 −(x 2 − 2 2 ) x − 2 =4· 2 x−2 − 1 x −2 − x 2 − 4 x − 2 · T`u . d ´o suy r˘a ` ng lim x→2 2 x − x 2 x − 2 = 4 lim x→2 2 x−2 − 1 x − 2 − lim x→2 x 2 −4 x − 2 = 4ln2 − 4. 2) D˘a . t y = π 4 −x. Khi d´o lim x→ π 4 cotg2x · cotg  π 4 − x  = lim y→0 cotg  π 2 − 2y  cotgy = lim y→0 sin 2y sin y · cos y cos 2y =2. 7.2. Gi´o . iha . n h`am mˆo . tbiˆe ´ n 33 3) D˘a . t y = 1 x . Khi d´o lim x→∞  e 1 x + 1 x  x = lim y→0 (e y + y) 1 y = e lim y→0 ln (e y + y) y ; lim y→0 ln(e y + y) y = lim y→0 ln[1 + (e y + y −1)] e y + y − 1 · e y + y − 1 y = lim t→0 ln(1 + t) t · lim y→0  1+ e y − 1 y  =2. T`u . d´o suy r˘a ` ng lim y→0  e y + y  1 y = e 2 .  V´ı du . 4. Ch´u . ng to ’ r˘a ` ng h`am f( x) = sin 1 x khˆong c´o gi´o . iha . n khi x → 0. Gia ’ i. Ta lu . u´ymˆe . nh d ˆe ` phu ’ di . nh dˆo ´ iv´o . id i . nh ngh˜ıa gi´o . iha . n: lim x→a f(x) = A ⇔∃ε 0 > 0 ∀δ>0 ∃x δ (0 < |x δ − a| <δ) →|f(x 0 ) − A|  ε 0 . Nˆe ´ u A =0talˆa ´ y ε 0 = 1 2 v`a x k = 2 π 2 +2kπ . Khi d´o ∀δ>0, ∃k ∈ N :0<x k <δv`a |f(x k ) − 0| = |f(x k )| =1>ε 0 v`a nhu . vˆa . y A = 0 khˆong pha ’ i l`a gi´o . iha . ncu ’ ah`amd ˜a cho khi x → 0. Nˆe ´ u A = 0 th`ı ta lˆa ´ y ε 0 = |A| 2 v`a x k = 1 2kπ . Khi d´o ∀δ>0, ∃k ∈ N :0<x k <δth`ı |f(x k ) − A| = |A| >ε.Nhu . vˆa . ymo . isˆo ´ A =0d ˆe ` u khˆong l`a gi´o . iha . ncu ’ a h`am sin 1 x khi x → 0.  V´ı du . 5. H`am Dirichlet D( x): D(x)=    1nˆe ´ u x ∈ Q, 0nˆe ´ u x ∈ R \Q 34 Chu . o . ng 7. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am sˆo ´ khˆong c´o gi´o . iha . nta . i ∀a ∈ R. Gia ’ i. Ta ch´u . ng minh r˘a ` ng ta . imo . idiˆe ’ m a ∈ R h`am D(x) khˆong tho ’ a m˜an D i . nh l´y 2. Dˆe ’ l`am viˆe . cd´o, ta chı ’ cˆa ` nchı ’ ra hai d˜ay (a n )v`a (a  n )c`ung hˆo . itu . dˆe ´ n a sao cho lim n→∞ D(a n ) = lim n→∞ D(a  n ). D ˆa ` u tiˆen ta x´et d˜ay c´ac diˆe ’ mh˜u . uty ’ (a n )hˆo . itu . dˆe ´ n a.Tac´o D(a n )=1∀n v`a do d´o lim n→∞ D(a n ) = 1. Bˆay gi`o . ta x´et d˜ay (a  n )- d˜ay c´ac d iˆe ’ mvˆoty ’ hˆo . itu . dˆe ´ n a.Tac´oD(a  n )=0∀n v`a do vˆa . y lim n→∞ D(a  n )=0. Nhu . vˆa . y lim n→∞ D(a n ) = lim n→∞ D(a  n ). T`u . d ´o suy ra r˘a ` ng ta . idiˆe ’ m a h`am D(x) khˆong c´o gi´o . iha . n. V´ı d u . 6. Gia ’ su . ’ lim x→a f(x)=b, lim x→a g(x)=+∞.Ch´u . ng minh r˘a ` ng lim x→a [f(x)+g(x)] = +∞. Gia ’ i. Ta cˆa ` nch´u . ng minh r˘a ` ng ∀M>0, ∃δ>0 sao cho ∀x :0< |x − a| <δth`ı f(x)+g(x) >M. V`ı lim x→a f(x)=b nˆen tˆo ` nta . i δ 1 -lˆan cˆa . n U(a, δ 1 )cu ’ adiˆe ’ m a sao cho |f(x)| <C, x= a (7.18) trong d ´o C l`a h˘a ` ng sˆo ´ du . o . ng n`ao d ´o . Gia ’ su . ’ M>0 l`a sˆo ´ cho tru . ´o . ct`uy ´y. V`ı lim x→a g(x)=+∞ nˆen d ˆo ´ i v´o . isˆo ´ M + C, ∃δ>0(δ  δ 1 ) sao cho ∀x :0< |x − a| <δth`ı g(x) >M+ C (7.19) T`u . c´ac bˆa ´ td˘a ’ ng th´u . c (7.18) v`a(7.19) ta thu du . o . . c l`a: v´o . i x tho ’ a m˜an diˆe ` ukiˆe . n0< |x −a| <δ δ 1 th`ı f(x)+g(x)  g(x) −|f(x)| >M+ C − C = M.  B ` AI T ˆ A . P 7.2. Gi´o . iha . n h`am mˆo . tbiˆe ´ n 35 1. Su . ’ du . ng d i . nh ngh˜ıa gi´o . iha . n h`am sˆo ´ d ˆe ’ ch´u . ng minh c´ac d ˘a ’ ng th ´u . c sau d ˆay: 1) lim x→ π 6 sin x = 1 2 ; 2) lim x→ π 2 sin x =1; 3) lim x→0 x sin 1 x = 0; 4) lim x→+∞ arctgx = π 2 . Chı ’ dˆa ˜ n. D`ung hˆe . th ´u . c π 2 − arctgx<tg  π 2 − arctgx  = 1 x ) 5) lim x→∞ x −1 3x +2 = 1 3 ; 6) lim x→+∞ log a x =+∞; 7) lim x→+∞  √ x 2 +1− x  = 0; 8) lim x→−5 x 2 +2x − 15 x +5 = −8; 9) lim x→1 (5x 2 − 7x + 6) = 4; 10) lim x→2 x 2 − 3x +2 x 2 + x − 6 = 1 5 ; 11) lim x→+∞ x sin x x 2 − 100x + 3000 =0. 2. Ch´u . ng minh c´ac gi´o . iha . n sau dˆay khˆong tˆo ` nta . i: 1) lim x→1 sin 1 x −1 ; 2) lim x→∞ sin x; 3) lim x→o 2 1 x ; 4) lim x→0 e 1 x ; 5) lim x→∞ cos x. Nˆe ´ utu . ’ sˆo ´ v`a mˆa ˜ usˆo ´ cu ’ a phˆan th ´u . ch˜u . uty ’ dˆe ` u triˆe . t tiˆeu ta . idiˆe ’ m x = a th`ı c´o thˆe ’ gia ’ nu . ´o . c phˆan th´u . cchox − a (= 0) mˆo . t ho˘a . cmˆo . t sˆo ´ lˆa ` n. Su . ’ du . ng phu . o . ng ph´ap gia ’ nu . ´o . cd´o, h˜ay t´ınh c´ac gi´o . iha . n sau dˆay (3-10). 3. lim x→7 2x 2 − 11x − 21 x 2 − 9x +14 (DS. 17 5 ) 4. lim x→1 x 4 −x 3 + x 2 − 3x +2 x 3 −x 2 − x +1 (DS. 2) 5. lim x→1 x 4 +2x 2 −3 x 2 −3x +2 (DS. −8) 6. lim x→1 x m − 1 x n − 1 ; m, n ∈ Z (D S. m n ) 36 Chu . o . ng 7. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am sˆo ´ 7. lim x→1  1 1 − x − 3 1 − x 3  (DS. −1) 8. lim x→1  a 1 − x a − b 1 − x b  ; a, b ∈ N (D S. a −b 2 ) 9. lim x→1 (x n − 1)(x n−1 − 1) ···(x n−k+1 −1) (x − 1)(x 2 − 1) ···(x k − 1) (DS. C k n ) 10. lim x→a (x n − a n ) − na n−1 (x − a) (x −a) 2 , n ∈ N (DS. n(n − 1) 2 a n−1 ) Chı ’ dˆa ˜ n. Dˆo ’ ibiˆe ´ n x −a = t. C´ac b`ai to´an sau dˆay c´o thˆe ’ du . avˆe ` da . ng trˆen nh`o . ph´ep dˆo ’ ibiˆe ´ n (11-14) 11. lim x→1 x p q − 1 x r s − 1 (D S. ps qr ) 12. lim x→−1 1+ 3 √ x 1+ 5 √ x (DS. 5 3 ) 13. lim x→0 3 3 √ 1+x −4 4 √ 1+x +1 2 − 2 √ 1+x + x (DS. 1 6 ) 14. lim x→0 n √ 1+x − 1 x (DS. 1 n ) Mˆo . t trong c´ac phu . o . ng ph´ap t´ınh gi´o . iha . ncu ’ a c´ac biˆe ’ uth´u . cvˆoty ’ l`a chuyˆe ’ nvˆoty ’ t`u . mˆa ˜ usˆo ´ lˆen tu . ’ sˆo ´ ho˘a . c ngu . o . . cla . i (15-26) 15. lim x→0 √ 1+x + x 2 − 1 x (DS. 1 2 ) 16. lim x→2 √ 3+x + x 2 − √ 9 − 2x + x 2 x 2 − 3x +2 (DS. 1 2 ) 17. lim x→0 5x 3 √ 1+x − 3 √ 1 − x (D S. 15 2 ) 18. lim x→0 3 √ 1+3x − 3 √ 1 − 2x x + x 2 (DS. 2) 19. lim x→∞ √ x 2 +1− √ x 2 − 1  (DS. 0) 7.2. Gi´o . iha . n h`am mˆo . tbiˆe ´ n 37 20. lim x→∞  3 √ 1 − x 3 + x  (DS. 0) 21. lim x→+∞  √ x 2 +5x + x  (DS. +∞) 22. lim x→−∞ √ x 2 +5x + x  (DS. − 5 2 ) 23. lim x→+∞ √ x 2 +2x − x  (DS. 1) 24. lim x→−∞ √ x 2 +2x − x  .(DS. +∞) 25. lim x→∞  (x +1) 2 3 − (x −1) 2 3  (D S. 0) 26. lim x→+∞  n  (x + a 1 )(x + a 2 ) ···(x + a n ) − x  (D S. a 1 + a 2 + ···+ a n n ) Khi gia ’ i c´ac b`ai to´an sau dˆay ta thu . `o . ng su . ’ du . ng hˆe . th ´u . c lim t→0 (1 + t) α − 1 t = α (27-34) 27. lim x→0 5 √ 1+3x 4 − √ 1 − 2x 3 √ 1+x − √ 1+x (DS. −6) 28. lim x→0 n √ a + x − n √ a − x x , n ∈ N (DS. 2 n a 1 n −1 ) 29. lim x→0 √ 1+3x + 3 √ 1+x − 5 √ 1+x − 7 √ 1+x 4 √ 1+2x + x − 6 √ 1+x (D S. 313 280 ) 30. lim x→0 3 √ a 2 + ax + x 2 − 3 √ a 2 − ax + x 2 √ a + x − √ a −x (D S. 3 2 a 1 6 ) 31. lim x→0  √ 1+x 2 + x  n −  √ 1+x 2 − x  n x (DS. 2n) 32. lim x→0 n √ a + x − n √ a − x x , n ∈ N, a>0(DS. 2 n √ a na ) 33. lim x→0 n √ 1+ax − k √ 1+bx x , n ∈ N, a>0(DS. ak −bn nk ) 34. lim x→∞  n  (1 + x 2 )(2 + x 2 ) ···(n + x 2 ) − x 2  (D S. n +1 2 ) 38 Chu . o . ng 7. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am sˆo ´ Khi t´ınh gi´o . iha . n c´ac biˆe ’ uth´u . clu . o . . ng gi´ac ta thu . `o . ng su . ’ du . ng cˆong th ´u . cco . ba ’ n lim x→0 sin x x =1 c`ung v´o . isu . . kˆe ´ tho . . p c´ac phu . o . ng ph´ap t`ım gi´o . iha . nd ˜a n ˆeu o . ’ trˆen (35-56). 35. lim x→∞ sin πx 2 x (DS. 0) 36. lim x→∞ arctgx 2x (DS. 0) 37. lim x→−2 x 2 − 4 arctg(x +2) (DS. −4) 38. lim x→0 tgx − sin x x 3 (DS. 1 2 ) 39. lim x→0 xcotg5x (DS. 1 5 ) 40. lim x→1 (1 − x)tg πx 2 (DS. 2 π ) 41. lim x→1 1 − x 2 sin πx (DS. 2 π ) 42. lim x→π sin x π 2 − x 2 (DS. 1 2π ) 43. lim x→0 cos mx − cos nx x 2 (DS. 1 2 (n 2 − m 2 )) 44. lim x→∞ x 2  cos 1 x − cos 3 x  (DS. 4) 45. lim x→0 sin(a + x) + sin(a −x) −2sin a x 2 (DS. −sin a) 46. lim x→0 cos(a + x) + cos(a −x) −2 cos a 1 − cos x (D S. −2 cos a) 47. lim x→∞  sin √ x 2 +1− sin √ x 2 − 1  (DS. 0) 7.2. Gi´o . iha . n h`am mˆo . tbiˆe ´ n 39 48. lim x→0 √ cos x − 1 x 2 (DS. − 1 4 ) 49. lim x→ π 2 cos x 2 − sin x 2 cos x (D S. 1 √ 2 ) 50. lim x→ π 3 sin  x − π 3  1 − 2 cos x (D S. 1 √ 3 ) 51. lim x→ π 4 √ 2 cos x − 1 1 − tg 2 x (D S. 1 4 ) 52. lim x→0 √ 1+tgx − √ 1 − tgx sin x (DS. 1) 53. lim x→0 m √ cos αx − m √ cos βx x 2 (DS. β 2 − α 2 2m ) 54. lim x→0 cos x − 3 √ cos x sin 2 x (DS. − 1 3 ) 55. lim x→0 1 − cos x √ cos 2x tgx 2 (DS. 3 2 ) 56. lim x→0 √ 1+x sin x − cos x sin 2 x 2 (DS. 4) D ˆe ’ t´ınh gi´o . iha . n lim x→a [f(x)] ϕ(x) , trong d´o f(x) → 1, ϕ(x) →∞khi x → a ta c´o thˆe ’ biˆe ´ nd ˆo ’ ibiˆe ’ uth´u . c [f(x)] ϕ(x) nhu . sau: lim x→a [f(x)] ϕ(x) = lim x→a  [1 + (f(x) −1)] 1 f(x)−1  ϕ(x)[f(x)−1] = e lim x→a ϕ(x)[f(x)−1] o . ’ dˆay lim x→a ϕ(x)[f(x) −1] du . o . . c t´ınh theo c´ac phu . o . ng ph´ap d˜a nˆeu trˆen d ˆa y . N ˆe ´ u lim x→a ϕ(x)[f(x) −1] = A th`ı lim x→a [f(x)] ϕ(x) = e A (57-68). 40 Chu . o . ng 7. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am sˆo ´ 57. lim x→∞  2x +3 2x +1  x+1 (DS. e) 58. lim x→∞  x 2 − 1 x 2  x 4 (DS. 0) 59. lim x→0 (1 + tgx) cotgx (DS. e) 60. lim x→0 (1 + 3tg 2 x) cotg 2 x (DS. e 3 ) 61. lim x→0  cos x cos 2x  1 x 2 (DS. e 3 2 ) 62. lim x→ π 2 (sin x) 1 cotgx (DS. −1) 63. lim x→ π 2 (tgx) tg2x (DS. e −1 ) 64. lim x→0  tg  π 4 + x  cotg2x (DS. e) 65. lim x→0  cos x  1 x 2 (DS. e − 1 2 ) 66. lim x→0  cos 3x  1 sin 2 x (DS. e − 9 2 ) 67. lim x→0  1+tgx 1 + sin x  1 sin x (DS. 1) 68. lim x→ π 4  sin 2x  tg 2 2x (DS. e − 1 2 ) Khi t´ınh gi´o . iha . n c´ac biˆe ’ uth´u . cc´och´u . a h`am lˆodarit v`a h`am m˜uta thu . `o . ng su . ’ du . ng c´ac cˆong th´u . c (7.15) v`a (7.16) v`a c´ac phu . o . ng ph´ap t´ınh gi´o . iha . nd˜anˆeuo . ’ trˆen (69-76). 69. lim x→e lnx −1 x − e (DS. e −1 ) 70. lim x→10 lgx −1 x −10 (DS. 1 10ln10 ) 71. lim x→0 e x 2 − 1 √ 1 + sin 2 x −1 (DS. 2) 72. lim x→0 e x 2 − cos x sin 2 x (DS. 3 2 ) [...]... 3 Cho tru.´.c sˆ ε > 0 Theo dinh ngh˜a 1∗ ta o √ ´.c lu.o.ng mˆdun cua n´ Ta ’ a o o lˆp hiˆu f (x) − f (5) = x + 4 − 3 v` u o a e c´ o √ |x − 5| |x − 5| < | x + 4 − 3| = √ 3 | x + 4 + 3| (*) ´ Nˆu ta chon δ = 3 th` v´.i nh˜.ng gi´ tri x m` |x − 5| < δ = 3 e ı o u a a √ d´ suy r˘ng h`m f (x) liˆn tuc tai diˆm ’ ` u a a e e ta s˜ c´ | x + 4 − 3| < ε T` o e o x0 = 5 √ ` ’ e e a a V´ du 3. .. − 3) liˆn tuc ∀ x ∈ R ı u a a e ’ ´ ’ e u ´ e e Giai Ta lˆy diˆm x0 ∈ R t`y y X´t hiˆu a sin(2x − 3) − sin(2x0 − 3) = 2 cos(x + x0 − 3) sin(x − x0) = α(x) V` | cos(x + x0 − 3) | ı 1 v` sin(x − x0)| < |x − x0 | nˆn khi x → x0 a e ` ’ h`m sin(x − x0 ) l` h`m vˆ c`ng b´ T` d´ suy r˘ng α(x) l` t´ch cua a a a o u e u o a a ı e a h`m bi ch˘n v´.i vˆ c`ng b´ v` a a o o u lim sin(2x − 3) = sin(2x0 − 3) ...7 .3 H`m liˆn tuc a e eαx − eβx x→0 sin αx − sin βx 73 lim esin 5x − esin x x→0 ln(1 + 2x) 74 lim 2 41 (DS 1) (DS 2) 2 1 a ax − bx , a > 0, b > 0 (DS − ln ) 75 lim x→0 ln cos 2x 2 b sin x sin x 1 √ a +b x 76 lim , a > 0, b > 0 (DS ab) x→0 2 7 .3 H`m liˆn tuc a e - ’ ’ Dinh ngh˜ 7 .3. 1 H`m f (x) x´c dinh trong lˆn cˆn cua diˆm x0 ıa a a a a... ) ´ o u o V´.i ngˆn ng˜ sˆ gia dinh ngh˜a 7 .3. 1 c´ dang o ı o - ’ a a a a ’ e Dinh ngh˜ 7 .3. 1∗∗ H`m f (x) x´c dinh trong lˆn cˆn cua diˆm x0 ıa ´ du.o.c goi l` liˆn tuc tai x0 nˆu e a e lim ∆f = 0 ∆x→0 ´ ’ a Chu.o.ng 7 Gi´.i han v` liˆn tuc cua h`m sˆ o a e o 42 ` o B˘ng “ngˆn ng˜ d˜y” ta c´ dinh ngh˜a tu.o.ng du.o.ng a o u a ı - ’ Dinh ngh˜ 7 .3. 1∗∗∗ H`m f (x) x´c dinh trong lˆn cˆn diˆm... Dinh ngh˜ 7 .3. 1 H`m f (x) x´c dinh trong lˆn cˆn cua diˆm x0 ıa a a a a e ’ ´ du.o.c goi l` liˆn tuc tai diˆm d´ nˆu o e a e e lim f (x) = f (x0 ) x→x0 Dinh ngh˜ 7 .3. 1 tu.o.ng du.o.ng v´.i ıa o - ’ ’ a a a a e Dinh ngh˜ 7 .3. 1∗ H`m f (x) x´c dinh trong lˆn cˆn cua diˆm x0 ıa ’ ´ du.o.c goi l` liˆn tuc tai diˆm x0 nˆu e a e e ∀ ε > 0 ∃ δ > 0 ∀ x ∈ Df : |x − x0| < δ ⇒ |f (x) − f (x0 )| . − 6 √ 1+x (D S. 31 3 280 ) 30 . lim x→0 3 √ a 2 + ax + x 2 − 3 √ a 2 − ax + x 2 √ a + x − √ a −x (D S. 3 2 a 1 6 ) 31 . lim x→0  √ 1+x 2 + x  n −  √ 1+x 2 − x  n x (DS. 2n) 32 . lim x→0 n √ a. x 2 − 1 x (DS. 1 2 ) 16. lim x→2 √ 3+ x + x 2 − √ 9 − 2x + x 2 x 2 − 3x +2 (DS. 1 2 ) 17. lim x→0 5x 3 √ 1+x − 3 √ 1 − x (D S. 15 2 ) 18. lim x→0 3 √ 1+3x − 3 √ 1 − 2x x + x 2 (DS. 2) 19. lim x→∞ √ x 2 +1− √ x 2 −. gi´o . iha . n sau dˆay (3- 10). 3. lim x→7 2x 2 − 11x − 21 x 2 − 9x +14 (DS. 17 5 ) 4. lim x→1 x 4 −x 3 + x 2 − 3x +2 x 3 −x 2 − x +1 (DS. 2) 5. lim x→1 x 4 +2x 2 3 x 2 −3x +2 (DS. −8) 6. lim x→1 x m −

Ngày đăng: 13/07/2014, 23:20

TỪ KHÓA LIÊN QUAN