1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập toán cao cấp part 6 doc

16 421 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 250,45 KB

Nội dung

8.2. Vi phˆan 79 C ´ AC V ´ IDU . V´ı du . 1. T´ınh vi phˆan df nˆe ´ u 1) f(x) = ln(arctg(sin x)); 2) f(x)=x √ 64 −x 2 +64arcsin x 8 . Gia ’ i. 1) ´ Ap du . ng c´ac t´ınh chˆa ´ tcu ’ a vi phˆan ta c´o df = d[arctg(sin x)] arctg(sin x) = d(sin x) (1 + sin 2 x)arctg(sin x) = cos xdx (1 + sin 2 x)arctg(sin x) · 2) df = d[x √ 64 − x 2 ]+d  64arcsin x 8  = xd √ 64 − x 2 + √ 64 −x 2 dx +64d  arcsin x 8  = x d(64 − x 2 ) 2 √ 64 − x 2 + √ 64 −x 2 dx +64· d  x 8   1 − x 2 64 = −x 2 dx √ 64 −x 2 + √ 64 − x 2 dx +64 dx √ 64 − x 2 =2 √ 64 − x 2 dx, |x| < 8.  V´ı du . 2. T´ınh vi phˆan cˆa ´ p2cu ’ a c´ac h`am 1) f(x)=xe −x ,nˆe ´ u x l`a biˆe ´ ndˆo . clˆa . p; 2) f(x)=sinx 2 nˆe ´ u a) x l`a biˆe ´ ndˆo . clˆa . p, b) x l`a h`am cu ’ amˆo . tbiˆe ´ ndˆo . clˆa . pn`aod´o . Gia ’ i. 1) Phu . o . ng ph´ap I. Theo d i . nh ngh˜ıa vi phˆan cˆa ´ p 2 ta c´o d 2 f = d[df ]=d[xde −x + e −x dx] = d(−xe −x dx + e −x dx)=−d(xe −x )dx + d(e −x )dx = −(xde −x + e −x dx)dx −e −x dx 2 = xe −x dx 2 − e −x dx 2 −e −x dx 2 =(x − 2)e −x dx 2 . 80 Chu . o . ng 8. Ph´ep t´ınh vi phˆan h`am mˆo . tbiˆe ´ n Phu . o . ng ph´ap II.T´ınh d a . o h`am cˆa ´ p hai f  (x) ta c´o f  (x)=(xe −x )  =(e −x − xe −x )  = −e −x − e −x + xe −x =(x − 2)e −x v`a theo cˆong th´u . c (8.6) ta c´o d 2 f =(x − 2)e −x dx 2 . 2) a) Phu . o . ng ph´ap I. Theo di . nh ngh˜ıa vi phˆan cˆa ´ p hai ta c´o d 2 f = d[d sin x 2 ]=d[2x cos x 2 dx]=d[2x cos x 2 ]dx =  2 cos x 2 dx +2x(−sin x 2 )2xdx  dx = (2 cos x 2 − 4x 2 sin x 2 )dx 2 . Phu . o . ng ph´ap II.T´ınh da . o h`am cˆa ´ p hai f  xx ta c´o f  x =2x cos x 2 ,f  xx = 2 cos x 2 − 4x 2 sin x 2 v`a theo (8.6) ta thu du . o . . c d 2 f = (2 cos x 2 − 4x 2 sin x 2 )dx 2 . b) Nˆe ´ u x l`a biˆe ´ n trung gian th`ı n´oi chung d 2 x =0v`adod´o ta c´o d 2 f = d(2x cos x 2 dx)=(2x cos x 2 )d 2 x +[d(2x cos x 2 )]dx =2x cos x 2 d 2 x + (2 cos x 2 − 4x 2 sin x 2 )dx 2 .  V´ı d u . 3. ´ Ap du . ng vi phˆan d ˆe ’ t´ınh gˆa ` nd´ung c´ac gi´a tri . : 1) 5  2 −0, 15 2+0, 15 ; 2) arcsin 0, 51; 3) sin 29 ◦ . Gia ’ i. Cˆong th´u . cco . ba ’ nd ˆe ’ ´u . ng du . ng vi phˆan d ˆe ’ t´ınh gˆa ` nd´ung l`a ∆f(x 0 ) ≈ df (x 0 ) ⇒ f(x 0 +∆x) − f(x 0 ) ≈ f  (x 0 )∆x ⇒ f(x 0 +∆x) ≈ f(x 0 )+f  (x 0 )∆x 8.2. Vi phˆan 81 T`u . d ´o , d ˆe ’ t´ınh gˆa ` nd´ung c´ac gi´a tri . ta cˆa ` n thu . . chiˆe . nnhu . sau: 1 + Chı ’ ra biˆe ’ uth´u . c gia ’ it´ıchd ˆo ´ iv´o . i h`am m`a gi´a tri . gˆa ` nd ´ung cu ’ a n´o cˆa ` n pha ’ i t´ınh. 2 + Cho . ndiˆe ’ m M 0 (x 0 ) sao cho gi´a tri . cu ’ a h`am v`a cu ’ ada . o h`am cˆa ´ p 1cu ’ a n´o ta . idiˆe ’ mˆa ´ y c´o thˆe ’ t´ınh m`a khˆong d `ung ba ’ ng. 3 + Tiˆe ´ pdˆe ´ n l`a ´ap du . ng cˆong th´u . cv`u . a nˆeu. 1) T´ınh gˆa ` nd ´ung 5  2 −0, 15 2+0, 15 Sˆo ´ d ˜a cho l`a gi´a tri . cu ’ a h`am y = 5  2 − x 2+x ta . idiˆe ’ m x =0, 15. Ta d˘a . t x 0 =0;∆x =0, 15. Ta c´o y  = −4 5  2 −x 2+x 5(4 − x 2 ) = − 4y 5(4 −x 2 ) ⇒ y  (x 0 )=y  (0) = − 1 5 · Do d ´ov`ıy(0) = 1 nˆen y(0, 15) ≈ y(0) + y  (0)∆x =1− 1 5 · (0, 15) = 1 −0, 03 = 0, 97. 2) T´ınh gˆa ` nd ´ung arcsin 0, 51. X´et h`am y = arcsin x.Sˆo ´ cˆa ` nt´ınh l`a gi´a tri . cu ’ a h`am ta . idiˆe ’ m 0, 51; t´u . cl`ay(0, 51). D˘a . t x 0 =0, 5; ∆x =0, 01. Khi d´o ta c´o arcsin(x 0 +∆x ≈ arcsinx 0 + (arcsinx)  x=x 0 ∆x ⇒ arcsin(0, 5+0, 01) ≈ arcsin0, 5 + (arcsinx)    x=0,5 · 0, 01 = π 6 + 1  1 −(0, 5) 2 × (0, 01). 82 Chu . o . ng 8. Ph´ep t´ınh vi phˆan h`am mˆo . tbiˆe ´ n C´o thˆe ’ t´ınh gˆa ` nd´ung  1 −(0, 5) 2 = √ 0, 75 ≈ 0, 88 v`a do d´o arcsin0, 51 ≈ π 6 +0, 011 ≈ 0, 513. 3) Sˆo ´ sin 29 ◦ l`a gi´a tri . cu ’ a h`am y = sin x khi x = π 180 ×29. Ta d˘a . t x 0 = π 180 ×30 = π 6 ; y  π 6  = 1 2 ,y= cos x ⇒ y   π 6  = cos π 6 = √ 3 2 · D ˘a . t∆x = x − x 0 = 29π 180 − π 6 = − π 180 .Dod´o sin 29 ◦ ≈ y  π 6  + y   π 6  · ∆x = 1 2 + √ 3 2  − π 180  ≈ 0, 48.  B ` AI T ˆ A . P T´ınh vi phˆan df nˆe ´ u: 1. f(x) = arctg 1 x .(DS. df = −dx 1+x 2 ) 2. f(x)=2 tg 2 x .(DS. 2 tg 2 x ln2 ·2tgx · dx cos 2 x ) 3. f(x) = arccos(2 x ). (DS. − 2 x ln2dx √ 1 −e 2x ) 4. f(x)=x 3 lnx.(DS. x 2 (1 + 3lnx) dx) 5. f(x) = cos 2 ( √ x). (DS. −2 cos √ x ·sin √ x · dx 2 √ x ) 6. f(x)=(1+x 2 )arcotgx.(DS. (2xarccotgx − 1)dx) 7. f(x)= arctgx √ 1+x 2 .(DS. 1 − xarctgx (1 + x 2 ) 3/2 dx) 8. f(x) = sin 3 2x.(DS. 3 sin 2x sin 4xdx) 9. f(x) = ln(sin √ x). (DS. cotg √ x 2 √ x dx) 8.2. Vi phˆan 83 10. f(x)=e − 1 cos x .(DS. −tgx ·e − 1 cos x cos x dx) 11. f(x)=2 −x 2 .(DS. −2xe −x 2 ln2dx) 12. f(x) = arctg √ x 2 + 1. (DS. 2xdx 2+x 2 ) 13. f(x)= √ xarctg √ x.(DS. 1 2 √ x  arctg √ x + √ x 1+x  dx) 14. f(x)= x 2 arcsinx .(DS. x  2arcsinx − x √ 1 −x 2  (arcsinx) 2 dx). T´ınh vi phˆan cˆa ´ ptu . o . ng ´u . ng cu ’ a c´ac h`am sau 15. f(x)=4 −x 2 ; d 2 f ?(DS. 4 −x 2 2ln4(2x 2 ln4 −1)(dx) 2 ) 16. f(x)=  ln 2 x − 4. d 2 f ?(DS. 4lnx −4 −ln 3 x x 2  (lnx − 4) 3 (dx) 2 ) 17. f(x) = sin 2 x. d 3 f ?(DS. −4 sin 2x(dx) 3 ) 18. f(x)= √ x −1, d 4 f ?(DS. −15 16(x −1) 7/2 (dx) 4 ) 19. f(x)=xlnx, d 5 f ?(DS. − 6 x 4 (dx) 5 , x>0) 20. f(x)=x sin x; d 10 f ?(DS. (10 cos x − x sin x)(dx) 10 ) Su . ’ du . ng cˆong th´u . cgˆa ` nd ´ung ∆f ≈ df (khi f  (x) =0)dˆe ’ t´ınh gˆa ` nd´ung c´ac gi´a tri . sau 21. y = √ 3, 98. (DS. 1,955) 22. y = 3 √ 26, 19. (DS. 2,97) 23. y =  (2, 037) 2 − 3 (2, 037) 2 +5 .(DS. 0,35) 24. y = cos 31 ◦ .(DS. 0,85) 84 Chu . o . ng 8. Ph´ep t´ınh vi phˆan h`am mˆo . tbiˆe ´ n 25. y = tg45 ◦ 10  .(DS. 0,99) 26. y = ln(10, 21). (DS. 1,009) 27. y = sin 31 ◦ .(DS. 0,51) 28. y = arcsin0, 54. (D S. 0,57) 29. y = arctg(1, 05). (DS. 0,81) 30. y =(1, 03) 5 .(DS. 1,15) 8.3 C´ac di . nh l´yco . ba ’ nvˆe ` h`am kha ’ vi. Quy t˘a ´ c l’Hospital. Cˆong th´u . cTay- lor 8.3.1 C´ac di . nh l´yco . ba ’ nvˆe ` h`am kha ’ vi D - i . nh l´y Rˆon (Rolle). Gia ’ su . ’ : i) f(x) liˆen tu . ctrˆen doa . n [a, b]. ii) f(x) c´o da . o h`am h˜u . uha . n trong (a, b). iii) f(a)=f(b). Khi d ´otˆo ` nta . idiˆe ’ m ξ : a<ξ<bsao cho f(ξ)=0. D - i . nh l´y Lagr˘ang (Lagrange). Gia ’ su . ’ : i) f(x) liˆen tu . ctrˆen d oa . n [a, b]. ii) f(x) c´o da . o h`am h˜u . uha . n trong (a, b). Khi d´ot`ımdu . o . . c ´ıt nhˆa ´ tmˆo . tdiˆe ’ m ξ ∈ (a, b) sao cho f(b) −f(a) b −a = f  (ξ) (8.12) hay l`a f(b)=f(a)+f  (ξ)(b −a). (8.13) Cˆong th´u . c (8.12) go . i l`a cˆong th´u . csˆo ´ gia h˜u . uha . n. 8.3. C´ac di . nh l´y co . ba ’ nvˆe ` h`am kha ’ vi 85 D - i . nh l´y Cˆosi (Cauchy). Gia ’ su . ’ : i) f(x) v`a ϕ(x) liˆen tu . ctrˆen d oa . n [a, b]. ii) f(x) v`a ϕ(x) c´o d a . o h`am h˜u . uha . n trong (a, b). iii) [f  (x)] 2 +[ϕ  (x)] 2 =0, ngh˜ıa l`a c´ac da . o h`am khˆong dˆo ` ng th`o . i b˘a ` ng 0. iv) ϕ(a) = ϕ(b). Khi d ´ot`ımdu . o . . cdiˆe ’ m ξ ∈ (a, b) sao cho: f(b) − f(a) ϕ(b) − ϕ(a) = f  (ξ) ϕ  (ξ) · (8.14) D i . nh l´y Lagrange l`a tru . `o . ng ho . . p riˆeng cu ’ adi . nh l´y Cauchy v`ı khi ϕ(x)=x th`ı t`u . (8.14) thu du . o . . c (8.13). Di . nh l´y Rˆon c˜ung l`a tru . `o . ng ho . . p riˆeng cu ’ adi . nh l´y Lagrange v´o . idiˆe ` ukiˆe . n f(a)=f(b). C ´ AC V ´ IDU . V´ı du . 1. Gia ’ su . ’ P ( x)=(x + 3)(x + 2)(x − 1). Ch´u . ng minh r˘a ` ng trong khoa ’ ng (−3, 1) tˆo ` nta . i nghiˆe . mcu ’ aphu . o . ng tr`ınh P  (ξ)=0. Gia ’ i. D ath´u . c P(x) c´o nghiˆe . mta . ic´acdiˆe ’ m x 1 = −3, x 2 = −2, x 3 = 1. Trong c´ac khoa ’ ng (−3, −2) v`a (−2, 1) h`am P (x) kha ’ vi v`a tho ’ a m˜an c´ac diˆe ` ukiˆe . ncu ’ adi . nh l´y Rˆon v`a: P ( −3) = P(−2)=0, P ( −2) = P(1) = 0. Do d ´o theo di . nh l´y Rˆon, t`ım du . o . . cd iˆe ’ m ξ 1 ∈ (−3, −2); ξ 2 ∈ (−2, 1) sao cho: P  (ξ 1 )=P  (ξ 2 )=0. Bˆay gi`o . la . i ´ap du . ng d i . nh l´y Rˆon cho doa . n[ξ 1 ,ξ 2 ] v`a h`am P  (x), ta la . it`ımdu . o . . cdiˆe ’ m ξ ∈ (ξ 1 ,ξ 2 ) ⊂ (−3, 1) sao cho P  (ξ)=0. 86 Chu . o . ng 8. Ph´ep t´ınh vi phˆan h`am mˆo . tbiˆe ´ n V´ı du . 2. H˜ay x´et xem h`am f(x) = arcsinx trˆen doa . n[−1, +1] c´o tho ’ a m˜an di . nh l´y Lagrange khˆong ? Nˆe ´ u tho ’ a m˜an th`ı h˜ay t`ım diˆe ’ m ξ (xem (8.12)). Gia ’ i. H`am f(x) x´ac d i . nh v`a liˆen tu . ctrˆen[−1, +1]. Ta t`ım f  (x). f  (x)= 1 √ 1 −x 2 → f  (x) < ∞,x∈ (−1, 1) (Lu . u´yr˘a ` ng khi x = ±1da . o h`am khˆong tˆo ` nta . inhu . ng diˆe ’ ud´o khˆong a ’ nh hu . o . ’ ng dˆe ´ nsu . . tho ’ am˜andiˆe ` ukiˆe . ncu ’ adi . nh l´y Lagrange !). Nhu . vˆa . y h`am f tho ’ am˜andi . nh l´y Lagrange. Tat`ımd iˆe ’ m ξ. Ta c´o: arcsin1 − arcsin( −1) 1 − (−1) = 1  1 −ξ 2 ⇒ π 2 −  − π 2  2 = 1  1 −ξ 2 ⇒  1 −ξ 2 = 2 π ⇒ ξ 1,2 = ±  1 − 4 π 2 Nhu . vˆa . y trong tru . `o . ng ho . . p n`ay cˆong th´u . c (8.12) tho ’ a m˜an dˆo ´ iv´o . i hai d iˆe ’ m. V´ı du . 3. H˜ay kha ’ o s´at xem c´ac h`am f(x)=x 2 − 2x +3v`a ϕ(x)= x 3 − 7x 2 +20x − 5 c´o tho ’ a m˜an diˆe ` ukiˆe . ndi . nh l´y Cauchy trˆen doa . n [1, 4] khˆong ? Nˆe ´ uch´ung tho ’ a m˜an d i . nh l´y Cauchy th`ı h˜ay t`ım diˆe ’ m ξ. Gia ’ i. i) Hiˆe ’ n nhiˆen ca ’ f(x)v`aϕ(x)liˆen tu . c khi x ∈ [1, 4]. ii) f(x)v`aϕ(x)c´od a . o h`am h˜u . uha . n trong (1, 4). iii) D iˆe ` ukiˆe . nth´u . iii) c˜ung tho ’ a m˜an v`ı: g  (x)=3x 2 − 14x +20> 0,x∈ R. iv) Hiˆe ’ n nhiˆen ϕ(1) = ϕ(4). 8.3. C´ac di . nh l´y co . ba ’ nvˆe ` h`am kha ’ vi 87 Do d´o f(x)v`aϕ(x) tho ’ a m˜an di . nh l´y Cauchy v`a ta c´o f(4) −f(1) ϕ(4) −ϕ(1) = f  (ξ) ϕ  (ξ) hay 11 − 2 27 − 9 = 2ξ −2 3ξ 2 − 14ξ +20 ,ξ∈ (1, 4). T`u . d ´othudu . o . . c ξ 1 =2,ξ 2 =4v`ao . ’ d ˆay chı ’ c´o ξ 1 =2l`adiˆe ’ m trong cu ’ a(1, 4). Do d´o: ξ =2. V´ı d u . 4. Di . nh l´y Cauchy c´o ´ap du . ng du . o . . c cho c´ac h`am f(x)=cosx, ϕ(x)=x 3 trˆen doa . n[−π/2,π/2] hay khˆong ? Gia ’ i. Hiˆe ’ n nhiˆen f(x)v`aϕ(x) tho ’ a m˜an c´ac diˆe ` ukiˆe . n i), ii) v`a iv) cu ’ adi . nh l´y Cauchy. Tiˆe ´ p theo ta c´o: f  (x)=−sin x; ϕ  (x)=3x 2 v`a ta . i x = 0 ta c´o: f  (0) = −sin 0 = 0; ϕ  (0) = 0 v`a nhu . vˆa . y [ϕ  (0)] 2 +[f  (0)] 2 = 0. Do d´odiˆe ` ukiˆe . n iii) khˆong du . o . . c tho ’ a m˜an. Ta x´et vˆe ´ tr´ai cu ’ a (8.14): f(b) − f(a) ϕ(b) −ϕ(a) = cos(π/2) −cos(−π/2) (π/2) 3 −(−π/2) 3 =0. Bˆay gi`o . ta x´et vˆe ´ pha ’ icu ’ a (8.14). Ta c´o: f  (ξ) ϕ  (ξ) = − sin ξ 3ξ 2 · Nhu . ng d ˆo ´ iv´o . ivˆe ´ pha ’ i n`ay ta c´o: lim ξ→0  − sin ξ 3ξ 2  = lim ξ→0 sin ξ ξ · lim ξ→0  − 1 3ξ  = ∞. Diˆe ` ud´och´u . ng to ’ r˘a ` ng c´ac h`am d˜a cho khˆong tho ’ a m˜an di . nh l´y Cauchy. B ` AI T ˆ A . P 1. H`am y =1− 3 √ x 2 trˆen doa . n[−1, 1] c´o tho ’ am˜andiˆe ` ukiˆe . ncu ’ adi . nh l´y Rˆon khˆong ? Ta . i sao ? (Tra ’ l`o . i: Khˆong) 88 Chu . o . ng 8. Ph´ep t´ınh vi phˆan h`am mˆo . tbiˆe ´ n 2. H`am y =3x 2 − 5 c´o tho ’ am˜andi . nh l´y Lagrange trˆen doa . n[−2, 0] khˆong ? Nˆe ´ u n´o tho ’ a m˜an, h˜ay t`ım gi´a tri . trung gian ξ. (Tra ’ l`o . i: C´o) 3. Ch´u . ng minh r˘a ` ng h`am f(x)=x +1/x tho ’ a m˜an d i . nh l´y Lagrange trˆen d oa . n[1/2, 2]. T`ım ξ.(DS. ξ =1) 4. Ch´u . ng minh r˘a ` ng c´ac h`am f(x) = cos x, ϕ(x) = sin x tho ’ a m˜an d i . nh l´y Cauchy trˆen doa . n[0,π/2]. T`ım ξ ?(DS. ξ = π/4) 5. Ch´u . ng minh r˘a ` ng h`am f(x)=e x v`a ϕ(x)=x 2 /(1 + x 2 ) khˆong tho ’ a m˜an d i . nh l´y Cauchy trˆen doa . n[−3, 3]. 6. Trˆen du . `o . ng cong y = x 3 h˜ay t`ım diˆe ’ m m`a ta . id´otiˆe ´ p tuyˆe ´ nv´o . i du . `o . ng cong song song v´o . i dˆay cung nˆo ´ idiˆe ’ m A(−1, −1) v´o . i B(2, 8). (D S. M(1, 1)) Chı ’ dˆa ˜ n. Du . . a v`ao ´y ngh˜ıa h`ınh ho . ccu ’ a cˆong th´u . csˆo ´ gia h˜u . uha . n. 8.3.2 Khu . ’ c´ac da . ng vˆo d i . nh. Quy t˘a ´ c Lˆopitan (L’Hospitale) Trong chu . o . ng II ta d˜a d ˆe ` cˆa . pdˆe ´ nviˆe . ckhu . ’ c´ac da . ng vˆo di . nh. Bˆay gi`o . ta tr`ınh b`ay quy t˘a ´ c Lˆopitan - cˆong cu . co . ba ’ ndˆe ’ khu . ’ c´ac da . ng vˆo di . nh Da . ng vˆo di . nh 0/0 Gia ’ su . ’ hai h`am f(x)v`aϕ(x) tho ’ a m˜an c´ac diˆe ` ukiˆe . n i) lim x→a f(x) = 0; lim x→a ϕ(x)=0. ii) f(x)v`aϕ(x) kha ’ vi trong lˆan cˆa . n n`ao d´o c u ’ adiˆe ’ m x = a v`a ϕ  (x) = 0 trong lˆan cˆa . nd´o, c´o thˆe ’ tr `u . ra ch´ınh d iˆe ’ m x = a. iii) Tˆo ` nta . i gi´o . iha . n(h˜u . uha . n ho˘a . cvˆoc`ung) lim x→a f  (x) ϕ  (x) = k. [...]... phai l` diˆu kiˆn cˆn ` ` ’ a e e a ch´ o u ` ˆ BAI TAP ´ ’ ´ Ap dung quy t˘c L’Hospital dˆ t´nh gi´.i han: a e ı o 16 x4 − 16 (DS ) 1 lim 3 2 − 6x − 16 x→2 x + 5x 13 m xm − am (DS am−n ) 2 lim n n x→a x − a n ´ Chu.o.ng 8 Ph´p t´nh vi phˆn h`m mˆt biˆn e ı a a o e 94 3 4 5 6 e2x − 1 (DS 2) lim x→0 sin x a2 1 − cos ax (DS 2 ) lim x→0 1 + cos bx b x −x e − e − 2x (DS 2) lim x→0 x − sin x ln(1... o u ’ u u o ´ quy t˘c L’Hospital ta thu du.o.c a 2x 2 ln(1 + x2 ) 2x = lim 1x+ x = lim x lim x x→0 e − 1 − x x→0 e − 1 x→0 (e − 1)(1 + x2 ) 2 2 = lim x = = 2 2 ) + (ex − 1)2x x→0 e (1 + x 1 V´ du 6 T´ ı ınh lim tgx π 2 cos x x→ 2 ’ Giai Ta c´ vˆ dinh dang “∞0 ” Nhu.ng o o tgx 2 cos x 2ln tgx = e2 cos xln tgx = e 1/ cos x ´ ´ v` o sˆ m˜ cua l˜y th`.a ta thu du.o.c vˆ dinh dang “∞/∞” Ap dung... (DS −1) x→∞ x x (DS +∞) 11 lim x→∞ ln(1 + x) ln sin x (DS 1) ln sin 5x x−a cotg(x − a) (DS 1/a) 13 lim arcsin x→a a (DS 0) 14 lim (π − 2arctgx)lnx 12 lim x→+0 x→∞ 15 lim (a1/x − 1)x, a > 0 x→∞ πx 16 lim (2 − x)tg 2 x→1 (DS lna) (DS e2/π ) x 1 − (DS −1) x→1 lnx lnx 18 lim (x − x2ln(1 + 1/x)) (Ds 1/2) 17 lim x→∞ 1 − cotg2 x (DS 2/3) x→0 x2 x (DS e) 20 lim x1/ln(e −1) 19 lim x→0 . d[x √ 64 − x 2 ]+d  64 arcsin x 8  = xd √ 64 − x 2 + √ 64 −x 2 dx +64 d  arcsin x 8  = x d (64 − x 2 ) 2 √ 64 − x 2 + √ 64 −x 2 dx +64 · d  x 8   1 − x 2 64 = −x 2 dx √ 64 −x 2 + √ 64 − x 2 dx. d˘a . t x 0 = π 180 ×30 = π 6 ; y  π 6  = 1 2 ,y= cos x ⇒ y   π 6  = cos π 6 = √ 3 2 · D ˘a . t∆x = x − x 0 = 29π 180 − π 6 = − π 180 .Dod´o sin 29 ◦ ≈ y  π 6  + y   π 6  · ∆x = 1 2 + √ 3 2  − π 180  ≈. T ˆ A . P ´ Ap du . ng quy t˘a ´ c L’Hospital d ˆe ’ t´ınh gi´o . iha . n: 1. lim x→2 x 4 − 16 x 3 +5x 2 −6x − 16 .(DS. 16 13 ) 2. lim x→a x m − a m x n − a n .(DS. m n a m−n ) 94 Chu . o . ng 8. Ph´ep t´ınh

Ngày đăng: 13/07/2014, 23:20

TỪ KHÓA LIÊN QUAN

w