1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập toán cao cấp part 4 pot

16 435 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 269,04 KB

Nội dung

7.3. H`am liˆen tu . c 47 nguyˆen) sao cho ta . id´o h `a m b ˘a ` ng h˘a ` ng sˆo ´ . Do vˆa . y n´o liˆen tu . cta . i x 0 . Nˆe ´ u x 0 = n l`a sˆo ´ nguyˆen th`ı [n − 0] = n −1, [n +0]=n.T`u . d ´o suy r˘a ` ng x 0 = n l`a diˆe ’ m gi´an doa . nkiˆe ’ uI. V´ı du . 8. Kha ’ o s´at su . . liˆen tu . c v`a phˆan loa . id iˆe ’ m gi´an doa . ncu ’ a c´ac h`am 1) f(x)= x 2 x , 2) f(x)=e − 1 x , 3) f(x)=    x nˆe ´ u x  1 lnx nˆe ´ u x>1. Gia ’ i 1) H`am f(x)=x nˆe ´ u x = 0 v`a khˆong x´ac d i . nh khi x =0. V`ı ∀a ta c´o lim x→a x = a nˆen khi a =0: lim x→a f(x)=a = f(a) v`a do vˆa . y h`am f(x)liˆen tu . c ∀x = 0. Ta . id iˆe ’ m x = 0 ta c´o gi´an doa . n khu . ’ du . o . . cv`ıtˆo ` nta . i lim x→0 f(x) = lim x→0 x =0. 2) H`am f(x)=e − 1 x l`a h`am so . cˆa ´ pv`ı n´o l`a ho . . pcu ’ a c´ac h`am y = −x −1 v`a f = e y .Hiˆe ’ n nhiˆen l`a h`am f(x) x´ac di . nh ∀x =0v`a do d´o n´o liˆen tu . c ∀x =0. V`ı h`am f(x) x´ac di . nh trong lˆan cˆa . ndiˆe ’ m x = 0 v`a khˆong x´ac di . nh ta . ich´ınh diˆe ’ m x =0nˆen diˆe ’ m x =0l`adiˆe ’ m gi´an d oa . n. Ta t´ınh f(0 + 0) v`a f(0 − 0). Ta x´et d˜ay vˆo c`ung b´et`uy ´y (x n ) sao cho x n > 0 ∀n.V`ı lim x→∞  − 1 x n  = −∞ nˆen lim x→∞ e − 1 x n =0. T`u . d´o suy r˘a ` ng lim x→0+0 e − 1 x =0. Bˆay gi`o . ta x´et d˜ay vˆo c`ung b´e bˆa ´ tk`y(x  n ) sao cho x  0 < 0 ∀n.V`ı lim n→∞  − 1 x  n  =+∞ nˆen lim x→0 e − 1 x  n =+∞.Dod´o lim x→0−0 e − 1 x =+∞ t´u . cl`af(0 −0)=+∞. Nhu . vˆa . y gi´o . iha . n bˆen tr´ai cu ’ a h`am f(x)ta . id iˆe ’ m x = 0 khˆong tˆo ` n ta . idod´odiˆe ’ m x =0l`adiˆe ’ m gi´an doa . nkiˆe ’ uII. 48 Chu . o . ng 7. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am sˆo ´ 3) Ta ch´u . ng minh r˘a ` ng f(x)liˆen tu . cta . id iˆe ’ m x = a = 1. Ta lˆa ´ y ε<|a −1|, ε>0. Khi d´o ε-lˆan cˆa . ncu ’ adiˆe ’ m x = a khˆong ch´u . ad iˆe ’ m x =1nˆe ´ u ε<|a − 1|. Trong ε-lˆan cˆa . n n`ay h`am f(x) ho˘a . ctr`ung v´o . i h`am ϕ(x)=x nˆe ´ u a<1 ho˘a . ctr`ung v´o . i h`am ϕ(x)=lnx nˆe ´ u a>1. V`ı c´ac h`am so . cˆa ´ pco . ba ’ n n`ay liˆen tu . cta . idiˆe ’ m x = a nˆen h`am f(x) liˆen tu . cta . id iˆe ’ m x = a =1. Ta kha ’ o s´at t´ınh liˆen tu . ccu ’ a h`am f(x)ta . idiˆe ’ m x = a =1. Dˆe ’ l`am viˆe . cd ´o ta cˆa ` n t´ınh c´ac gi´o . iha . nmˆo . t ph´ıa cu ’ a f(x)ta . id iˆe ’ m x = a =1. Ta c´o f(1 + 0) = lim x→1+0 f(x) = lim x→1+0 lnx =0, f(1 − 0) = lim x→1−0 f(x) = lim x→1−0 x = lim x→1 x =1. Nhu . vˆa . y f(1 + 0) = f(1 −0) v`a do d´o h`am f(x) c´o gi´an doa . nkiˆe ’ u Ita . i x = a =1. B ` AI T ˆ A . P Kha ’ o s´at t´ınh liˆen tu . c v`a phˆan loa . id iˆe ’ m gi´an doa . ncu ’ a h`am 1. f(x)= |2x − 3| 2x − 3 (DS. H`am x´ac di . nh v`a liˆen tu . c ∀x = 3 2 ;ta . i x 0 = 3 2 h`am c´o gi´an doa . nkiˆe ’ uI) 2. f(x)=    1 x nˆe ´ u x =0 1nˆe ´ u x =0. (D S. H`am liˆen tu . c ∀x ∈ R) 3. C´o tˆo ` nta . i hay khˆong gi´a tri . a d ˆe ’ h`am f(x)liˆen tu . cta . i x 0 nˆe ´ u: 1) f(x)=    4 · 3 x nˆe ´ u x<0 2a + x khi x  0. (DS. H`am f liˆen tu . c ∀x ∈ R nˆe ´ u a =2) 7.3. H`am liˆen tu . c 49 2) f(x)=    x sin 1 x ,x=0; a, x =0,x 0 =0. . (DS. a =0) 3) f(x)=    1+x 1+x 3 ,x= −1 a, x = −1,x 0 = −1. (DS. a = 1 3 ) 4) f(x)=    cos x, x  0; a(x −1),x>0; x 0 =0. (DS. a = −1) 4. f(x)= |sin x| sin x (DS. H`am c´o gi´an doa . nta . i x = kπ, k ∈ Z v`ı: f(x)=    1nˆe ´ u sin x>0 −1nˆe ´ u sin x<0) 5. f(x)=E(x) − E(−x) (D S. H`am c´o gi´an doa . nkhu . ’ du . o . . cta . i x = n, x ∈ Z v`ı: f(x)=    −1nˆe ´ u x = n 0nˆe ´ u x = n.) 6. f(x)=    e 1/x khi x =0 0 khi x =0. (D S. Ta . idiˆe ’ m x = 0 h`am c´o gi´an doa . nkiˆe ’ uII;f(−0) = 0, f(+0) = ∞) T`ım diˆe ’ m gi´an doa . n v`a t´ınh bu . ´o . c nha ’ ycu ’ a c´ac h`am: 7. f(x)=x + x +2 |x +2| (D S. x = −2l`adiˆe ’ m gi´an doa . nkiˆe ’ uI,δ(−2) = 2) 50 Chu . o . ng 7. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am sˆo ´ 8. f(x)= 2|x − 1| x 2 −x 3 (DS. x =0l`adiˆe ’ m gi´an doa . nkiˆe ’ uII,x =1l`adiˆe ’ m gi´an doa . nkiˆe ’ u I, δ(1) = −4) H˜ay bˆo ’ sung c´ac h`am sau dˆay ta . idiˆe ’ m x =0dˆe ’ ch´ung tro . ’ th`anh liˆen tu . c 9. f(x)= tgx x (DS. f(0) = 1) 10. f(x)= √ 1+x − 1 x (D S. f(0) = 1 2 ) 11. f(x)= sin 2 x 1 − cos x (DS. f(0) = 2) 12. Hiˆe . ucu ’ a c´ac gi´o . iha . nmˆo . tph´ıa cu ’ a h`am f(x): d = lim x→x 0 +0 f(x) − lim x→x 0 −0 f(x) d u . o . . cgo . il`abu . ´o . c nha ’ y cu ’ a h`am f(x)ta . idiˆe ’ m x 0 .T`ım diˆe ’ m gi´an doa . n v`a bu . ´o . c nha ’ y cu ’ a h`am f(x)nˆe ´ u: 1) f(x)=    − 1 2 x 2 nˆe ´ u x  2, x nˆe ´ u x>2. (D S. x 0 =2l`adiˆe ’ m gi´an doa . nkiˆe ’ uI;d =4) 2) f(x)=          2 √ x nˆe ´ u0 x  1; 4 − 2x nˆe ´ u1<x 2, 5; 2x − 7nˆe ´ u2, 5  x<+∞. (D S. x 0 =2, 5l`adiˆe ’ m gi´an doa . nkiˆe ’ uI;d = −1) 3) f(x)=    2x +5 nˆe ´ u −∞<x<−1, 1 x nˆe ´ u − 1  x<+∞. (DS. x 0 =0l`adiˆe ’ m gi´an doa . nkiˆe ’ uII;diˆe ’ m x 0 = −1l`adiˆe ’ m gi´an doa . nkiˆe ’ uI,d = −4) 7.4. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am nhiˆe ` ubiˆe ´ n 51 7.4 Gi´o . iha . nv`aliˆen tu . ccu ’ ah`am nhiˆe ` u biˆe ´ n 1. Gia ’ su . ’ u = f(M)=f(x, y) x´ac d i . nh trˆen tˆa . pho . . p D. Gia ’ su . ’ M 0 (x 0 ,y 0 )l`adiˆe ’ mcˆo ´ di . nh n`ao d´ocu ’ am˘a . t ph˘a ’ ng v`a x → x 0 , y → y 0 , khi d´o d iˆe ’ m M(x, y) → M 0 (x 0 ,y 0 ). Diˆe ` u n`ay tu . o . ng du . o . ng v´o . i khoa ’ ng c´ach ρ(M,M 0 )gi˜u . ahaidiˆe ’ m M v`a M 0 dˆa ` ndˆe ´ n0.Talu . u´yr˘a ` ng ρ(M,M 0 )=[(x − x 0 ) 2 +(y − y 0 ) 2 ] 1/2 . Ta c´o c´ac d i . nh ngh˜ıa sau dˆay: i) Di . nh ngh˜ıa gi´o . iha . n (theo Cauchy) Sˆo ´ b d u . o . . cgo . i l`a gi´o . iha . ncu ’ a h`am f(M) khi M → M 0 (hay ta . i diˆe ’ m M 0 )nˆe ´ u ∀ε>0, ∃δ = δ(ε) > 0:∀M ∈{D :0<ρ(M, M 0 ) <δ(ε)} ⇒|f(M) −b| <ε. ii) D i . nh ngh˜ıa gi´o . iha . n (theo Heine) Sˆo ´ b du . o . . cgo . i l`a gi´o . iha . ncu ’ a h`am f(M)ta . idiˆe ’ m M 0 nˆe ´ udˆo ´ iv´o . i d˜ay diˆe ’ m {M n } bˆa ´ tk`yhˆo . itu . dˆe ´ n M 0 sao cho M n ∈ D, M n = M 0 ∀n ∈ N th`ı d˜ay c´ac gi´a tri . tu . o . ng ´u . ng cu ’ a h`am {f(M n )} hˆo . itu . dˆe ´ n b. K´yhiˆe . u: i) lim M→M 0 f(M)=b, ho˘a . c ii) lim x → x 0 y → y 0 f(x, y)=b Hai di . nh ngh˜ıa gi´o . iha . ntrˆendˆay tu . o . ng du . o . ng v´o . i nhau. Ch´u´y.Ta nhˆa ´ nma . nh r˘a ` ng theo di . nh ngh˜ıa, gi´o . iha . ncu ’ a h`am khˆong phu . thuˆo . c v`ao phu . o . ng M dˆa ` nt´o . i M 0 .Dod´onˆe ´ u M → M 0 theo c´ac hu . ´o . ng kh´ac nhau m`a f(M)dˆa ` nd ˆe ´ n c´ac gi´a tri . kh´ac nhau th`ı khi M → M 0 h`am f(M) khˆong c´o gi´o . iha . n. 52 Chu . o . ng 7. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am sˆo ´ iii) Sˆo ´ b du . o . . cgo . i l`a gi´o . iha . ncu ’ a h`am f(M) khi M →∞nˆe ´ u ∀ε>0, ∃R>0:∀M ∈{D : ρ(M, 0) >R}⇒|f(M) − b| <ε. D ˆo ´ iv´o . i h`am nhiˆe ` ubiˆe ´ n, c`ung v´o . i gi´o . iha . n thˆong thu . `o . ng d ˜anˆeuo . ’ trˆen (gi´o . iha . nk´ep !), ngu . `o . i ta c`on x´et gi´o . iha . nl˘a . p. Ta s˜e x´et kh´ai niˆe . m n`ay cho h`am hai biˆe ´ n u = f(M)=f(x, y). Gia ’ su . ’ u = f(x, y) x´ac di . nh trong h`ınh ch˜u . nhˆa . t Q = {(x, y):|x −x 0 | <d 1 , |y − y 0 | <d 2 } c´o thˆe ’ tr `u . ra ch´ınh c´ac diˆe ’ m x = x 0 , y = y 0 . Khi cˆo ´ di . nh mˆo . t gi´a tri . y th`ı h`am f(x, y) tro . ’ th`anh h`am mˆo . tbiˆe ´ n. Gia ’ su . ’ d ˆo ´ iv´o . i gi´a tri . cˆo ´ d i . nh y bˆa ´ tk`y tho ’ a m˜an diˆe ` ukiˆe . n0< |y − y 0 | <d 2 tˆo ` nta . i gi´o . iha . n lim x→x 0 y cˆo ´ di . nh f(x, y)=ϕ(y). Tiˆe ´ p theo, gia ’ su . ’ lim y→y 0 ϕ(y)=b tˆo ` nta . i. Khi d´o ngu . `o . i ta n´oi r˘a ` ng tˆo ` nta . i gi´o . iha . nl˘a . p cu ’ a h`am f(x, y)ta . idiˆe ’ m M 0 (x 0 ,y 0 ) v`a viˆe ´ t lim y→y 0 lim x→x 0 f(x, y)=b, trong d´o gi´o . iha . n lim x→x 0 y cˆo ´ di . nh 0<|y−y 0 |<d 2 f(x, y)go . i l`a gi´o . iha . n trong. Tu . o . ng tu . . ,ta c´o thˆe ’ ph´at biˆe ’ ud i . nh ngh˜ıa gi´o . iha . nl˘a . p kh´ac lim x→x 0 lim y→y 0 f(x, y) trong d´o g i ´o . iha . n lim y→y 0 x cˆo ´ di . nh 0<|x−x 0 |<d 1 f(x, y) l`a gi´o . iha . n trong. Mˆo ´ i quan hˆe . gi˜u . a gi´o . iha . n k´ep v`a c´ac gi´o . iha . nl˘a . pd u . o . . cthˆe ’ hiˆe . n trong d i . nh l´y sau dˆay: 7.4. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am nhiˆe ` ubiˆe ´ n 53 Gia ’ su . ’ ta . id iˆe ’ m M 0 (x 0 ,y 0 ) gi´o . iha . nk´ep v`a c´ac gi´o . iha . n trong cu ’ a c´ac gi´o . iha . nl˘a . pcu ’ a h`am tˆo ` nta . i. Khi d ´o c´ac gi´o . iha . nl˘a . ptˆo ` nta . iv`a lim x→x 0 lim y→y 0 f(x, y) = lim y→y 0 lim x→x 0 = lim x→x 0 y→y 0 f(x, y). T`u . d i . nh l´y n`ay ta thˆa ´ yr˘a ` ng viˆe . c thay dˆo ’ ith´u . tu . . trong c´ac gi´o . i ha . n khˆong pha ’ i bao gi`o . c˜ung d u . o . . cph´ep. D ˆo ´ iv´o . i h`am nhiˆe ` ubiˆe ´ ntac˜ung c´o nh˜u . ng d i . nh l´y vˆe ` c´ac t´ınh chˆa ´ t sˆo ´ ho . ccu ’ a gi´o . iha . ntu . o . ng tu . . c´ac di . nh l´yvˆe ` gi´o . iha . ncu ’ a h`am mˆo . t biˆe ´ n. 2. T`u . kh´ai niˆe . m gi´o . iha . n ta s˜e tr`ınh b`ay kh´ai niˆe . mvˆe ` t´ınh liˆen tu . c cu ’ a h`am nhiˆe ` ubiˆe ´ n. H`am u = f(M)d u . o . . cgo . il`aliˆen tu . c ta . id iˆe ’ m M 0 nˆe ´ u: i) f(M) x´ac di . nh ta . ich´ınh diˆe ’ m M 0 c˜ung nhu . trong mˆo . t lˆan cˆa . n n`ao d´ocu ’ adiˆe ’ m M 0 . ii) Gi´o . iha . n lim M→M 0 f(M)tˆo ` nta . i. iii) lim M→M 0 f(M)=f(M 0 ). Su . . liˆen tu . cv`u . adu . o . . cdi . nh ngh˜ıa go . i l`a su . . liˆen tu . c theo tˆa . pho . . p biˆe ´ nsˆo ´ . H`am f(M)liˆen tu . c trong miˆe ` n D nˆe ´ u n´o liˆen tu . cta . imo . idiˆe ’ mcu ’ a miˆe ` nd ´o. Diˆe ’ m M 0 du . o . . cgo . il`ad iˆe ’ m gi´an doa . n cu ’ a h`am f(M)nˆe ´ udˆo ´ iv´o . i d iˆe ’ m M 0 c´o ´ıt nhˆa ´ tmˆo . t trong ba diˆe ` ukiˆe . n trong di . nh ngh˜ıa liˆen tu . c khˆong tho ’ a m˜an. Diˆe ’ m gi´an doa . ncu ’ a h`am nhiˆe ` ubiˆe ´ nc´othˆe ’ l`a nh˜u . ng diˆe ’ m cˆo lˆa . p, v`a c˜ung c´o thˆe ’ l`a ca ’ mˆo . tdu . `o . ng (du . `o . ng gi´an doa . n). Nˆe ´ u h`am f(x, y)liˆen tu . cta . id iˆe ’ m M 0 (x 0 ,y 0 ) theo tˆa . pho . . pbiˆe ´ nsˆo ´ th`ı n´o liˆen tu . c theo t`u . ng biˆe ´ nsˆo ´ .Diˆe ` u kh˘a ’ ng di . nh ngu . o . . cla . i l`a khˆong d´ung. C˜ung nhu . dˆo ´ iv´o . i h`am mˆo . tbiˆe ´ n, tˆo ’ ng, hiˆe . u v`a t´ıch c´ac h`am liˆen tu . c hai biˆe ´ nta . id iˆe ’ m M 0 l`a h`am liˆen tu . cta . idiˆe ’ md´o; thu . o . ng cu ’ a hai h`am liˆen tu . cta . i M 0 c˜ung l`a h`am liˆen tu . cta . i M 0 nˆe ´ uta . idiˆe ’ m M 0 h`am 54 Chu . o . ng 7. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am sˆo ´ mˆa ˜ usˆo ´ kh´ac 0. Ngo`ai ra, di . nh l´y vˆe ` t´ınh liˆen tu . ccu ’ a h`am ho . . pvˆa ˜ n d ´ung trong tru . `o . ng ho . . p n`ay. Nhˆa . nx´et. Tu . o . ng tu . . nhu . trˆen ta c´o thˆe ’ tr`ınh b`ay c´ac kh´ai niˆe . mco . ba ’ n liˆen quan d ˆe ´ n gi´o . iha . n v`a liˆen tu . ccu ’ a h`am ba biˆe ´ n, C ´ AC V ´ IDU . V´ı du . 1. Ch´u . ng minh r˘a ` ng h`am f(x, y)=(x + y) sin 1 x sin 1 y l`a vˆo c`ung b´e ta . id iˆe ’ m O(0, 0). Gia ’ i. Theo d i . nh ngh˜ıa vˆo c`ung b´e (tu . o . ng tu . . nhu . d ˆo ´ iv´o . i h`am mˆo . t biˆe ´ n) ta cˆa ` nch´u . ng minh r˘a ` ng lim x→0 y→0 f(x, y)=0. Ta´apdu . ng d i . nh ngh˜ıa gi´o . iha . n theo Cauchy. Ta cho sˆo ´ ε>0t`uy ´yv`ad ˘a . t δ = ε 2 . Khi d´o n ˆe ´ u ρ  M(x, y),O(0, 0)  =  x 2 + y 2 <δth`ı |x| <δ,|y| <δ. Do d ´o |f(x, y) − 0| =    (x + y) sin 1 x sin 1 y     |x| + |y| < 2δ = ε. Diˆe ` ud´och´u . ng to ’ r˘a ` ng lim x→0 y→0 f(x, y)=0. V´ı du . 2. T´ınh c´ac gi´o . iha . n sau d ˆay: 1) lim x→0 y→2  1+xy  2 x 2 + xy , 2) lim x→0 y→2  x 2 +(y − x) 2 +1− 1 x 2 +(y − 2) 2 , 3) lim x→0 y→0 x 4 + y 4 x 2 + y 2 . 7.4. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am nhiˆe ` ubiˆe ´ n 55 Gia ’ i. 1) Ta biˆe ’ udiˆe ˜ n h`am du . ´o . idˆa ´ u gi´o . iha . ndu . ´o . ida . ng   1+xy  1 xy  2y x + y . V`ı t = xy → 0 khi  x → 0 y → 0  nˆen lim x→0 y→2  1+xy  1 xy = lim t→0  1+t  1 t = e. Tiˆe ´ p theo v`ı lim x→0 y→2 2 x + y = 2 (theo di . nh l´y thˆong thu . `o . ng vˆe ` gi´o . iha . n cu ’ athu . o . ng), do d´o gi´o . iha . ncˆa ` n t`ım b˘a ` ng e 2 . 2) Ta t`ım gi´o . iha . nv´o . id iˆe ` ukiˆe . n M(x, y) → M 0 (0, 2). Khoa ’ ng c´ach gi˜u . a hai diˆe ’ m M v`a M 0 b˘a ` ng ρ =  x 2 +(y − 2) 2 . Do d´o lim x→0 y→2 f(x, y) = lim ρ→0  ρ 2 +1− 1 ρ 2 = lim ρ→0 (ρ 2 +1)−1 ρ 2 (  ρ 2 +1+1) = lim ρ→0 1  ρ 2 +1+1 = 1 2 · 3) Chuyˆe ’ n sang to . adˆo . cu . . ctac´ox = ρ cos ϕ, y = ρ sin ϕ.Tac´o x 4 + y 4 x 2 + y 2 = ρ 4 (cos 4 ϕ + sin 4 ϕ) ρ 2 (cos 2 ϕ + sin 2 ϕ) = ρ 2 (cos 4 ϕ + sin 4 ϕ). V`ı cos 4 ϕ + sin 4 ϕ  2nˆen lim x→0 y→0 x 4 + y 4 x 2 + y 2 = lim ρ→0 ρ 2 (cos 4 ϕ + sin 4 ϕ)=0. 56 Chu . o . ng 7. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am sˆo ´ V´ı du . 3. 1) Ch´u . ng minh r˘a ` ng h`am f 1 (x, y)= x −y x + y khˆong c´o gi´o . iha . nta . idiˆe ’ m(0, 0). 2) H`am f 2 (x, y)= xy x 2 + y 2 c´o gi´o . iha . nta . idiˆe ’ m(0, 0) hay khˆong ? Gia ’ i. 1) H`am f 1 (x, y) x´ac di . nh kh˘a ´ pno . i ngoa . itr`u . du . `o . ng th˘a ’ ng x + y =0. Tach´u . ng minh r˘a ` ng h`am khˆong c´o gi´o . iha . nta . i(0, 0). Ta lˆa ´ y hai d˜ay d iˆe ’ mhˆo . itu . dˆe ´ ndiˆe ’ m(0, 0): M n =  1 n , 0  → (0, 0),n→∞, M  n =  0, 1 n  → (0, 0),n→∞. Khi d ´othudu . o . . c lim n→∞ f 1 (M n ) = lim n→∞ 1 n −0 1 n +0 =1; lim n→∞ f 1 (M  n ) = lim n→∞ 0 − 1 n 0+ 1 n = −1. Nhu . vˆa . y hai d˜ay diˆe ’ m kh´ac nhau c`ung hˆo . itu . dˆe ´ ndiˆe ’ m(0, 0) nhu . ng hai d˜ay gi´a tri . tu . o . ng ´u . ng cu ’ a h`am khˆong c´o c`ung gi´o . iha . n. Do d ´o theo di . nh ngh˜ıa h`am khˆong c´o gi´o . iha . nta . i(0, 0). 2) Gia ’ su . ’ diˆe ’ m M(x, y)dˆa ` ndˆe ´ ndiˆe ’ m(0, 0) theo du . `o . ng th˘a ’ ng y = kx qua gˆo ´ cto . adˆo . . Khi d´o ta c´o lim x→0 y→0 (y=kx) xy x 2 + y 2 = lim x→0 kx 2 x 2 + k 2 x 2 = k 1+k 2 · [...]... cˆp 1 61 a - a ´ Dao h`m cˆp cao 62 a Vi phˆn 75 a 8.2.1 8.2.2 8.3 ´ Vi phˆn cˆp 1 75 a a ´ Vi phˆn cˆp cao 77 a a ` a ’ ’ C´c dinh l´ co ban vˆ h`m kha vi Quy a e y ´ t˘c l’Hospital Cˆng th´.c Taylor 84 a o u 8.3.1 ’ ` a ’ C´c d inh l´ co ban vˆ h`m kha vi 84 a e y 8.3.2 ´ o ’ a Khu c´c dang vˆ dinh Quy... w = 2 w = 3 w = 4 w = √ xy (DS |y| 0, y (DS x a2 − x2 − y 2 1 x2 + y 2 − a2 |x|) 0 ho˘c x a (DS x2 + y 2 0, y 0) a2 ) (DS x2 + y 2 > a2) x2 y 2 x2 y 2 − 2 (DS 2 + 2 1) a2 b a b 6 w = ln(z 2 − x2 − y 2 − 1) (DS x2 + y 2 − z 2 < −1) x √ ’ ’ u a o a 7 w = arcsin + xy (DS Hai nu.a b˘ng vˆ han th˘ng d´.ng 2 {0 x 2, 0 y < +∞} v` {−2 x 0, −∞ < y 0}) a 5 w = 1− 8 w = x2 + y 2 − 1 + ln (4 − x2 − y 2) a o... − 1 + ln (4 − x2 − y 2) a o (DS V`nh tr`n 1 x2 + y 2 < 4) ` a o a 9 w = sin π(x2 + y 2 ) (DS Tˆp ho.p c´c v`nh dˆng tˆm a a 2 2 2 2 1; 2 x + y 3; ) 0 x +y 10 w = ln(1 + z − x2 − y 2 ) ` ’ a a (DS Phˆn trong cua mˆt paraboloid z = x2 + y 2 − 1) ’ a a a ınh a o Trong c´c b`i to´n sau dˆy (11-18) h˜y t´ c´c gi´.i han cua h`m a a a ´ ` ’ a 7 .4 Gi´.i han v` liˆn tuc cua h`m nhiˆu biˆn o a e e e...´ ` ’ a 7 .4 Gi´.i han v` liˆn tuc cua h`m nhiˆu biˆn o a e e e ’ ’ ´ ` a a a e o a Nhu vˆy khi dˆn dˆn diˆm (0, 0) theo c´c du.`.ng th˘ng kh´c nhau e a o.ng u.ng v´.i c´c gi´ tri k kh´c nhau) ta thu du.o.c c´c gi´ tri gi´.i (tu ´ o a a a a o a han kh´c nhau, t´.c l` h`m d˜ cho khˆng c´ gi´.i han tai (0, 0) a u a a a o o o ’ a ınh e ’ a a V´ du 4 Khao s´t t´ liˆn tuc cua c´c... t´ c´c gi´.i han cua h`m a a a ´ ` ’ a 7 .4 Gi´.i han v` liˆn tuc cua h`m nhiˆu biˆn o a e e e sin xy x→0 xy (DS 1) sin xy x→0 x (DS 0) 11 lim y→0 12 lim y→0 xy 13 lim √ x→0 xy + 1 − 1 (DS 2) y→0 14 lim x→0 y→0 x2 + y 2 x2 + y 2 + 1 − 1 (DS 2) ’ ˜ ’ ’ a a Chı dˆ n Su dung khoang c´ch ρ = x2 + y 2 ho˘c nhˆn - chia a a i dai lu.o.ng liˆn ho.p v´.i mˆ u sˆ ˜ o e o a ´ v´ o y 2 2 15 lim 1 + xy... liˆn tuc Nˆu h`m f (x) kha e e o e a ’ ` vi th` n´ liˆn tuc Diˆu kh˘ng dinh ngu.o.c lai l` khˆng d´ng ı o e e a u a o ´ Chu.o.ng 8 Ph´p t´ vi phˆn h`m mˆt biˆn e ınh a a o e 62 - ´ Dao h`m cˆp cao a a 8.1.2 ´ ´ Dao h`m f (x) du.o.c goi l` dao h`m cˆp 1 (hay dao h`m bˆc nhˆt) a a a a a a a ´ ’ a a a a u Dao h`m cua f (x) du.o.c goi l` dao h`m cˆp hai (hay dao h`m th´ a o.c k´ hiˆu . ϕ.Tac´o x 4 + y 4 x 2 + y 2 = ρ 4 (cos 4 ϕ + sin 4 ϕ) ρ 2 (cos 2 ϕ + sin 2 ϕ) = ρ 2 (cos 4 ϕ + sin 4 ϕ). V`ı cos 4 ϕ + sin 4 ϕ  2nˆen lim x→0 y→0 x 4 + y 4 x 2 + y 2 = lim ρ→0 ρ 2 (cos 4 ϕ + sin 4 ϕ)=0. 56. lim x→0 y→2  1+xy  2 x 2 + xy , 2) lim x→0 y→2  x 2 +(y − x) 2 +1− 1 x 2 +(y − 2) 2 , 3) lim x→0 y→0 x 4 + y 4 x 2 + y 2 . 7 .4. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am nhiˆe ` ubiˆe ´ n 55 Gia ’ i. 1) Ta biˆe ’ udiˆe ˜ n. doa . nkiˆe ’ uII;diˆe ’ m x 0 = −1l`adiˆe ’ m gi´an doa . nkiˆe ’ uI,d = 4) 7 .4. Gi´o . iha . n v`a liˆen tu . ccu ’ a h`am nhiˆe ` ubiˆe ´ n 51 7 .4 Gi´o . iha . nv`aliˆen tu . ccu ’ ah`am nhiˆe ` u biˆe ´ n 1.

Ngày đăng: 13/07/2014, 23:20

TỪ KHÓA LIÊN QUAN