1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập toán cao cấp part 5 ppt

16 424 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 248,61 KB

Nội dung

8.1. D - a . o h`am 63 f(x) f  (x) f (n) (x) cos x −sin x cos  x + nπ 2  tgx 1 cos 2 x cotgx − 1 sin 2 x arc sin x 1 √ 1 − x 2 , |x| < 1 arccosx − 1 √ 1 − x 2 , |x| < 1 arctgx 1 1+x 2 arccotgx − 1 1+x 2 Viˆe . c t´ınh da . o h`am du . o . . cdu . . a trˆen c´ac quy t˘a ´ c sau dˆay. 1 + d dx [u + v]= d dx u + d dx v. 2 + d dx (αu)=α du dx , α ∈ R. 3 + d dx (uv)=v du dx + u dv dx . 4 + d dx  u v  = 1 v 2  v du dx − u dv dx  , v =0. 5 + d dx f[u(x)] = df du · du dx (da . o h`am cu ’ a h`am ho . . p). 6 + Nˆe ´ u h`am y = y(x) c´o h`am ngu . o . . c x = x(y)v`a dy dx ≡ y  x =0th`ı dx dy ≡ x  y = 1 y  x · 64 Chu . o . ng 8. Ph´ep t´ınh vi phˆan h`am mˆo . tbiˆe ´ n 7 + Nˆe ´ u h`am y = y(x)du . o . . c cho du . ´o . ida . ng ˆa ’ nbo . ’ ihˆe . th ´u . c kha ’ vi F (x, y)=0v`aF  y =0th`ı dy dx = − F  x F  y trong d´o F  x v`a F  y l`a da . o h`am theo biˆe ´ ntu . o . ng ´u . ng cu ’ a h`am F (x, y) khi xem biˆe ´ n kia khˆong dˆo ’ i. 8 + Nˆe ´ u h`am y = y(x)du . o . . cchodu . ´o . ida . ng tham sˆo ´ x = x(t), y = y(t)(x  (t) = 0) th`ı dy dx = y  (t) x  (t) · 9 + d n dx n (αu + βv)=α d n u dx n + β d n v dx n ; d n dx n uv = n  k=0 C k n d n−k dx n−k u d k dx k v (quy t˘a ´ c Leibniz). Nhˆa . nx´et. 1) Khi t´ınh da . o h`am cu ’ amˆo . tbiˆe ’ uth´u . cd˜a cho ta c´o thˆe ’ biˆe ´ nd ˆo ’ iso . bˆo . biˆe ’ uth´u . cd´o sao cho qu´a tr`ınh t´ınh da . oh`amdo . n gia ’ n ho . n. Ch˘a ’ ng ha . nnˆe ´ ubiˆe ’ uth´u . cd´o l`a logarit th`ı c´o thˆe ’ su . ’ du . ng c´ac t´ınh chˆa ´ tcu ’ a logarit d ˆe ’ biˆe ´ ndˆo ’ i rˆo ` it´ınhda . o h`am. Trong nhiˆe ` u tru . `o . ng ho . . p khi t´ınh da . o h`am ta nˆen lˆa ´ y logarit h`am d˜a cho rˆo ` i´ap du . ng cˆong th´u . cda . o h`am loga d dx lny(x)= y  (x) y(x) · 2) Nˆe ´ u h`am kha ’ vi trˆen mˆo . t khoa ’ ng du . o . . cchobo . ’ iphu . o . ng tr`ınh F (x, y)=0th`ıd a . o h`am y  (x) c´o thˆe ’ t`ım t`u . phu . o . ng tr`ınh d dx F (x, y)=0. C ´ AC V ´ IDU . 8.1. D - a . o h`am 65 V´ı du . 1. T´ınh da . o h`am y  nˆe ´ u: 1) y =ln 3  e x 1 + cos x ; x = π(2n + 1), n ∈ N 2) y = 1+x 2 3 √ x 4 sin 7 x , x = πn, n ∈ N. Gia ’ i. 1) Tru . ´o . chˆe ´ ttad o . n gia ’ nbiˆe ’ uth´u . ccu ’ a h`am y b˘a ` ng c´ach du . . a v`ao c´ac t´ınh chˆa ´ tcu ’ a logarit. Ta c´o y = 1 3 lne x − 1 3 ln(1 + cos x)= x 3 − 1 3 ln(1 + cos x). Do d´o y  = 1 3 − 1 3 (cos x)  1 + cos x = 1 3 + 1 3 sin x 1+cosx = 1+tg x 2 3 · 2) O . ’ d ˆay tiˆe . nlo . . iho . nca ’ l`a x´et h`am z =ln|y|.Tac´o dz dx = dz dy · dy dx = 1 y dy dx ⇒ dy dx = y dz dx · (*) Viˆe ´ t h`am z du . ´o . ida . ng x =ln|y| = ln(1 + x 2 ) − 4 3 ln|x|−7ln|sin x| ⇒ dz dx = 2x 1+x 2 − 4 3x − 7 cos x sin x · Thˆe ´ biˆe ’ uth´u . cv`u . athudu . o . . cv`ao(∗) ta c´o dy dx = 1+x 2 3 √ x 4 sin 7 x  2x 1+x 2 − 4 3x − 7 cos x sin x  .  V´ı du . 2. T´ınh d a . o h`am y  nˆe ´ u: 1) y = (2+cos x) x , x ∈ R;2)y = x 2 x , x>0. Gia ’ i. 1) Theo di . nh ngh˜ıa ta c´o y = e xln(2+cosx) . 66 Chu . o . ng 8. Ph´ep t´ınh vi phˆan h`am mˆo . tbiˆe ´ n T`u . d ´o y  = e xln(2+cosx)  xln(2 + cos x)   = e xln(2+cosx)  ln(2 + cos x) − x sin x 2 + cos x  ,x∈ R. 2) V`ı y = e 2 x lnx nˆen v´o . i x>0 ta c´o y  = e 2 x lnx [2 x lnx]  = e 2 x lnx  1 x 2 x +2 x ln2 · lnx  =2 x x 2 x  1 x +ln2· lnx  .  V´ı du . 3. T´ınh da . o h`am cˆa ´ p2cu ’ a h`am ngu . o . . cv´o . i h`am y = x + x 5 , x ∈ R. Gia ’ i. H`am d˜a cho liˆen tu . cv`ado . ndiˆe . u kh˘a ´ pno . i, da . o h`am y  = 1+5x 4 khˆong triˆe . t tiˆeu ta . ibˆa ´ tc´u . d iˆe ’ m n`ao. Do d´o x  y = 1 y  x = 1 1+5x 4 · Lˆa ´ yd a . o h`am d˘a ’ ng th´u . c n`ay theo y ta thu d u . o . . c x  yy =  1 1+5x 4   x · x  y = −20x 3 (1 + 5x 4 ) 3 ·  V´ı d u . 4. Gia ’ su . ’ h`am y = f(x)du . o . . cchodu . ´o . ida . ng tham sˆo ´ bo . ’ i c´ac cˆong th´u . c x = x(t), y = y(t), t ∈ (a; b) v`a gia ’ su . ’ x(t), y(t) kha ’ vi cˆa ´ p 2v`ax  (t) =0t ∈ (a, b). T`ım y  xx . Gia ’ i. Ta c´o dy dx = dy dt dx dt = y  t x  t ⇒ y  x = y  t x  t · Lˆa ´ yd a . o h`am hai vˆe ´ cu ’ ad˘a ’ ng th ´u . c n`ay ta c´o y  xx =  y  t x  t   t · t  x =  y  t x  t   t · 1 x  t = x  t y  tt − y  t x  tt x  t 3 ·  8.1. D - a . o h`am 67 V´ı d u . 5. Gia ’ su . ’ y = y(x), |x| >al`a h`am gi´a tri . du . o . ng cho du . ´o . i da . ng ˆa ’ nbo . ’ iphu . o . ng tr`ınh x 2 a 2 − y 2 b 2 =1. T´ınh y  xx . Gia ’ i. Dˆe ’ t`ım y  ta ´ap du . ng cˆong th´u . c d dx F (x, y)=0. Trong tru . `o . ng ho . . p n`ay ta c´o d dx  x 2 a 2 − y 2 b 2 − 1  =0. Lˆa ´ yda . o h`am ta c´o 2x a 2 − 2y b 2 y  x =0, (8.1) ⇒y  x = b 2 x a 2 y , |x| > 0,y >0. (8.2) Lˆa ´ yd a . o h`am (8.1) theo x ta thu du . o . . c 1 a 2 − 1 b 2  y  x  2 − y b 2 y  xx =0 v`a t`u . (8.2) ta thu du . o . . c y  x : y  xx = 1 y  b 2 a 2 −  y  x  2  = 1 y  b 2 a 2 − b 4 a 4 x 2 y 2  = − b 4 a 2 y 3  x 2 a 2 − y 2 b 2  = − b 4 a 2 y 3 ,y>0.  V´ı du . 6. T´ınh y (n) nˆe ´ u: 1) y = 1 x 2 − 4 ;2)y = x 2 cos 2x. Gia ’ i. 1) Biˆe ’ udiˆe ˜ nh`amd˜achodu . ´o . ida . ng tˆo ’ ng c´ac phˆan th´u . cco . ba ’ n 1 x 2 − 4 = 1 4  1 x − 2 − 1 x +2  68 Chu . o . ng 8. Ph´ep t´ınh vi phˆan h`am mˆo . tbiˆe ´ n v`a khi d´o  1 x 2 −4  (n) = 1 4  1 x − 2  (n) −  1 x +2  (n)  . Do  1 x ± 2  (n) =(−1)(−2) ···(−1 − n + 1)(x ± 2) −1−n =(−1) n n! 1 (x ± 2) n+1 nˆen  1 x 2 − 4  (n) = (−1) n n! 4  1 (x − 2) n+1 − 1 (x +2) n+1  . 2) Ta ´ap du . ng cˆong th´u . c Leibniz d ˆo ´ iv´o . id a . o h`am cu ’ at´ıch (x 2 cos 2x)=C 0 n x 2 (cos 2x) (n) + C 1 n (x 2 )  (cos 2x) n−1 + C 2 n (x 2 )  (cos 2x) n−2 . C´ac sˆo ´ ha . ng c`on la . idˆe ` u=0v`ı  x 2  (k) =0 ∀k>2. ´ Ap du . ng cˆong th´u . c (cos 2x) (n) =2 n cos  2x + nπ 2  ta thu du . o . . c (x 2 cos 2x) (n) =2 n  x 2 − n(n − 1) 4  cos  2x + nπ 2  +2 n nx sin  2x + nπ 2  .  V´ı d u . 7. V´o . i gi´a tri . n`ao cu ’ a a v`a b th`ı h`am f(x)=    e x ,x 0, x 2 + ax + b, x > 0 8.1. D - a . o h`am 69 c´o da . o h`am trˆen to`an tru . csˆo ´ . Gia ’ i. R˜o r`ang l`a h`am f(x)c´od a . o h`am ∀x>0v`a∀x<0. Ta chı ’ cˆa ` nx´etd iˆe ’ m x 0 =0. V`ı h`am f(x) pha ’ i liˆen tu . cta . id iˆe ’ m x 0 =0nˆen lim x→0+0 f(x) = lim x→0−0 f(x) = lim x→0 f(x) t´u . cl`a lim x→0+0 (x 2 + ax + b)=b = e 0 =1⇒ b =1. Tiˆe ´ pd ´o, f  + (0) = (x  + ax + b)    x 0 =0 = a v`a f  − (0) = e x   x 0 =0 =1. Do d´o f  (0) tˆo ` nta . inˆe ´ u a =1v`ab = 1. Nhu . vˆa . yv´o . i a =1,b =1 h`am d ˜a cho c´o da . o h`am ∀x ∈ R.  B ` AI T ˆ A . P T´ınh d a . o h`am y  cu ’ a h`am y = f(x)nˆe ´ u: 1. y = 4 √ x 3 + 5 x 2 − 3 x 3 + 2. (DS. 3 4 4 √ x − 10 x 3 + 9 x 4 ) 2. y = log 2 x + 3log 3 x.(DS. ln24 xln2 · ln3 ) 3. y =5 x +6 x +  1 7  x .(DS. 5 x ln5 + 6 x ln6 − 7 −x ln7) 4. y = ln(x +1+ √ x 2 +2x + 3). (DS. 1 √ x 2 +2x +3 ) 5. y = tg5x.(DS. 10 sin 10x ) 6. y = ln(ln √ x). (DS. 1 2xln √ x ) 7. y =ln  1+2x 1 − 2x .(DS. 2 1 − 4x 2 ) 70 Chu . o . ng 8. Ph´ep t´ınh vi phˆan h`am mˆo . tbiˆe ´ n 8. y = xarctg √ 2x − 1 − √ 2x − 1 2 .(DS. arctg √ 2x − 1) 9. y = sin 2 x 3 .(DS. 3x 2 sin 2x 3 ) 10. y = sin 4 x + cos 4 x.(DS. −sin 4x) 11. y = √ xe √ x .(DS. e √ x (1 + √ x) 2 √ x ) 12. y = e 1 cos x .(D S. e 1 cos x sin x cos 2 x ) 13. y = e 1 lnx .(DS. −e 1 lnx xln 2 x ) 14. y =ln  e 2x + √ e 4x +1. (DS. 2e 2x √ e 4x +1 ) 15. y =ln  e 4x e 4x +1 .(DS. 2 e 4x +1 ) 16. y = log 5 cos 7x.(DS. − 7tg7x ln5 ) 17. y = log 7 cos √ 1+x.(DS. − tg √ 1+x 2 √ 1+xln7 ) 18. y = arccos  e − x 2 2  .(D S. xe − x 2 2 √ 1 − e −x 2 ) 19. y = tg sin cosx.(D S. −sin cos(cos x) cos 2 (sin cos x) ) 20. y = e x 2 cotg3x .(DS. xe c 2 cotg3x sin 2 3x (sin 6x −3x)) 21. y = e √ 1+lnx .(DS. e √ 1+lnx 2x √ 1+lnx ) 22. y = x 1 x .(DS. x 1 x −2 (1 − lnx)) 23. y = e x .(DS. x x (1 + lnx)) 8.1. D - a . o h`am 71 24. y = x sin x .(DS. x sin x cos x · lnx + x sin x−1 sin x) 25. y = (tgx) sin x .(DS. (tg x) sin x  cos xlntgx + 1 cos x  ) 26. y = x sin x .(DS. x sin x  sin x x +lnx ·cos x  ) 27. y = x x 2 .(DS. x x 2 +1 (1 + 2lnx)) 28. y = x e x .(DS. e x x e x  1 x +lnx)) 29. y = log x 7. (DS. − 1 xlnxlog 7 x ) 30. y = 1 2a ln    x − a x + a    .(DS. 1 x 2 − a 2 ) 31. y = sin ln|x|.(DS. cos ln|x| x ) 32. y =ln|sin x|.(D S. cotgx) 33. y =ln|x + √ x 2 +1|.(DS. 1 √ x 2 +1 ). Trong c´ac b`ai to´an sau d ˆay (34-40) t´ınh da . o h`am cu ’ a h`am y du . o . . c cho du . ´o . ida . ng tham sˆo ´ . 34. x = a cos t, a sin t, t ∈ (0,π). y  xx ?(DS. − 1 a sin 3 t ) 35. x = t 3 , y = t 2 . y  xx ?(DS. − 2 9t 4 ) 36. x =1+e at , y = at + e −at . y  xx ?(DS. 2e −3at − e −2at ) 37. x = a cos 3 t, y = a sin 3 t. y  xx ?(DS. 1 3a sin t cos 4 t ) 38. x = e t cos t, y = e t sin t. y  xx ?(DS. 2 e t (cos t −sin t) 3 ) 39. x = t − sin t, y =1−cos t. y  xx ?(DS. − 1 4 sin 4 t 2 ) 40. x = t 2 +2t, y = ln(1 + t). y  xx ?(DS. −1 4(1 + t) 4 ). 72 Chu . o . ng 8. Ph´ep t´ınh vi phˆan h`am mˆo . tbiˆe ´ n Trong c´ac b`ai to´an sau dˆay (41-47) t´ınh da . o h`am y  ho˘a . c y  cu ’ a h`am ˆa ’ ndu . o . . c x´ac d i . nh bo . ’ i c´ac phu . o . ng tr`ınh d ˜acho 41. x + √ xy + y = a. y  ?(DS. 2a − 2x − y x +2y −a ) 42. arctg y x =ln  x 2 + y 2 . y  ?(DS. x + y x − y ) 43. e x sin y − e −y cos x =0. y  ?(DS. − e x sin y + e −y sin x e x cos y + e −y cos x ) 44. x 2 y + arctg  y x  =0. y  ?(DS. −2x 3 y −2xy 3 + y x 4 + x 2 y 2 + x ) 45. e x − e y = y −x. y  ?(DS. (e y − e x )(e x+y − 1) (e y +1) 3 ) 46. x + y = e x−y . y  ?(DS. 4(x + y) (x + y +1) 3 ) 47. y = x + arctgy. y  ?(DS. −(2y 2 +2) y 5 ). Trong c´ac b`ai to´an sau d ˆay (48-52) t´ınh da . o h`am cu ’ a h`am ngu . o . . c v´o . ih`amd ˜a cho. 48. y = x + x 3 , x ∈ R. x  y ?(DS. x  y = 1 1+3x 2 ) 49. y = x +lnx, x>0. x  y ?(DS. x  y = x x +1 , y>0) 50. y = x + e x . x  y ?(DS. x  y = 1 1+y −x , y ∈ R) 51. y =chx, x>0. x  y ?(DS. x  y = 1  y 2 − 1 ) 52. y = x 2 1+x 2 , x<0. x  y ?(DS. x  y = x 3 2y 2 , y ∈ (0, 1)). 53. V´o . i gi´a tri . n`ao cu ’ a a v`a b th`ı h`am f(x)=    x 3 nˆe ´ u x  x 0 , ax + b nˆe ´ u x>x 0 [...]... x0 , e f (x) = ax2 + b ´ nˆu x > x0 e ’ ’ kha vi tai diˆm x = x0 (x0 = 0) ? e f (x0 − 0) x0 (DS a = , b = f (x0 ) − f (x0 − 0)) 2x0 2 ´ e Trong c´c b`i to´n (56 -62) t´ dao h`m y nˆu a a a ınh a 2 56 y = e−x 57 y = tgx √ 58 y = 1 + x2 x 59 y = arcsin 2 1 60 y = arctg x 2 (DS 2e−x (2x2 − 1)) 2 sin x ) (DS cos3 x 1 (DS ) (1 + x2)3/2 x (DS ) (4 − x2)3/2 2x (DS ) (1 + x2 )2 ´ Chu.o.ng 8 Ph´p t´ vi... ’ ´ ’ a e a a e a 54 X´c dinh α v` β dˆ c´c h`m sau: a) liˆn tuc kh˘p no.i; b) kha vi a i nˆu ´ ´ kh˘p no e a  αx + β nˆu x 1 ´ e 1) f (x) =  x2 ´ nˆu x > 1 e 2)  α + βx2  f (x) = 1   |x| ´ nˆu |x| < 1, e ´ nˆu |x| e 1 (DS 1) a) α + β = 1, b) α = 2, β = −1; 2) a) α + β = 1, b) 3 1 α = , β = − ) 2 2 h`m y = f (x) x´c dinh trˆn tia (−∞, x0) v` kha vi bˆn ’ ’ ’ e a e a 55 Gia su a i gi´ tri... (DS 2n−1 cos 2x + n · 2 (DS 4n n!) 75 y = (4x + 1)n an ) (ax + b)n nπ ) (DS 4n−1 cos 4x + 77 y = sin4 x + cos4 x 2 3 1 ` ’ ˜ Chı dˆ n Ch´.ng minh r˘ng sin4 x + cos4 x = + cos 4x a u a 4 4 n nπ 3 π 3 78 y = sin3 x − sin 3x + n · ) (DS sin x + 4 2 4 2 ’ ˜ Chı dˆ n D`ng cˆng th´.c sin 3x = 3 sin x − 4 sin3 x a u o u 76 y = ln(ax + b) (DS (−1)n−1 (n − 1)! 8.2 Vi phˆn a 75 79 y = sin αx sin βx 1 1 π π (DS... d(uv) = udv + vdu, u vdu − udv d = , v v2 v = 0 (8 .5) 8.2 Vi phˆn a 77 ´ a ’ a 2+ Cˆng th´.c vi phˆn dy = f (x)dx luˆn luˆn thoa m˜n bˆt luˆn o u o o a a ´ ´ ´ ’ a a e o a a ınh a a x l` biˆn dˆc lˆp hay l` h`m cua biˆn dˆc lˆp kh´c T´ chˆt n`y a e o a ´ ´ e ´ ’ a e ` a a du.o.c goi l` t´nh bˆt biˆn vˆ dang cua vi phˆn cˆp 1 a ı 8.2.2 ´ Vi phˆn cˆp cao a a ´ ’ ’ ’ Gia su x l` biˆn dˆc lˆp v` h`m... arcsinx 62 y = f (ex ) (DS exf (ex ) + e2xf (ex )) ´ ´ ’ Trong c´c b`i to´n (63-69) t´nh dao h`m cˆp 3 cua y nˆu: a a a ı a e a 4(3x − 4) x (DS ) 63 y = arctg 2 (4 + x2 )3 64 y = xe−x (DS e−x (3 − x)) 65 y = ex cos x (DS −2ex (cos x + sin x)) 66 y = x2 sin x (DS −2ex (cos x + sin x)) 67 y = x32x (DS 2x (x3ln3 2 + 9x2 ln2 x + 18xln2 + 6)) 68 y = x2 sin 2x 69 y = (f (x2 ) (DS −4(2x2 cos 2x + 6x sin 2x . 0)). Trong c´ac b`ai to´an (56 -62) t´ınh da . o h`am y  nˆe ´ u 56 . y = e −x 2 .(DS. 2e −x 2 (2x 2 − 1)) 57 . y =tgx.(DS. 2 sin x cos 3 x ) 58 . y = √ 1+x 2 .(DS. 1 (1 + x 2 ) 3/2 ) 59 . y = arcsin x 2 .(DS. x (4. f(x)nˆe ´ u: 1. y = 4 √ x 3 + 5 x 2 − 3 x 3 + 2. (DS. 3 4 4 √ x − 10 x 3 + 9 x 4 ) 2. y = log 2 x + 3log 3 x.(DS. ln24 xln2 · ln3 ) 3. y =5 x +6 x +  1 7  x .(DS. 5 x ln5 + 6 x ln6 − 7 −x ln7) 4 e 1 lnx .(DS. −e 1 lnx xln 2 x ) 14. y =ln  e 2x + √ e 4x +1. (DS. 2e 2x √ e 4x +1 ) 15. y =ln  e 4x e 4x +1 .(DS. 2 e 4x +1 ) 16. y = log 5 cos 7x.(DS. − 7tg7x ln5 ) 17. y = log 7 cos √ 1+x.(DS. − tg √ 1+x 2 √ 1+xln7 ) 18.

Ngày đăng: 13/07/2014, 23:20

TỪ KHÓA LIÊN QUAN

w