1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập toán cao cấp part 7 pot

16 396 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 254,79 KB

Nội dung

8.3. C´ac di . nh l´y co . ba ’ nvˆe ` h`am kha ’ vi 95 21. lim x→0+0  cotgx  tgx .(DS. 1) 22. lim x→0  5 2+ √ 9+x  1/ sin x .(DS. e −1/30 ) 23. lim x→0  cos x  cotg 2 x .(DS. e −1/2 ) 24. lim x→0+0  ln2x  1/lnx .(DS. 1) 25. lim x→0  1 + sin 2 x  1/tg 2 x .(DS. e) 26. lim x→0+0  cotgx  1/lnx .(DS. e −1 ) 27. lim x→π/2  sin x  tgx .(DS. 1) 28. lim x→0 e +x − e −x − 2x sin x −x .(DS. −2) 29. lim x→0 e −x − 1+x − x 2 2 e x 3 − 1 .(DS. − 1 6 ) 30. lim x→0 e −x − 1+x 4 sin 2x .(DS. − 1 2 ) 31. lim x→0 2 x − 1 − xln2 (1 − x) m − 1+mx .(DS. ln 2 2 m(m −1) ) 32. lim x→0  2 π arccosx  1/x .(DS. e − 2 π ) 33. lim x→∞ lnx x α , α>0. (DS. 0) 34. lim x→∞ x m a x ,0<a= 1. (DS. 0) 35. lim x→0+0 ln sin x ln(1 − cos x) .(DS. 1 2 ) 36. lim x→0  1 x 2 − cotg 2 x  .(DS. 2 3 ) 37. lim x→ π 4  tgx  tg2x .(DS. e −1 ) 38. lim x→ π 2 −0  tgx  cotgx .(DS. 1) 96 Chu . o . ng 8. Ph´ep t´ınh vi phˆan h`am mˆo . tbiˆe ´ n 8.3.3 Cˆong th´u . c Taylor Gia ’ su . ’ h`am f(x) x´ac di . nh trong lˆan cˆa . n n`ao d´ocu ’ adiˆe ’ m x 0 v`a n lˆa ` n kha ’ vi ta . idiˆe ’ m x 0 th`ı f(x)=f(x 0 )+ f  (x 0 ) 1! (x − x 0 )+ f  (x 0 ) 2! (x − x 0 ) 2 + ···+ + f (n) (x 0 ) n! (x − x 0 ) n + o((x − x 0 ) n ) khi x → x 0 hay: f(x)= n  k=0 f (k) (x 0 ) k! (x −x 0 ) k + o((x − x 0 ) n ),x→ x 0 . (8.15) Dath´u . c P n (x)= n  k=0 f (k) (x 0 ) k! (x −x 0 ) k (8.16) d u . o . . cgo . il`adath´u . c Taylor cu ’ a h`am f(x)ta . idiˆe ’ m x 0 , c`on h`am: R n (x)=f( x) − P n (x) d u . o . . cgo . il`asˆo ´ ha . ng du . hay phˆa ` ndu . th ´u . n cu ’ a cˆong th´u . c Taylor. Cˆong th ´u . c (8.15) du . o . . cgo . i l`a cˆong th´u . c Taylor cˆa ´ p n dˆo ´ iv´o . i h`am f(x)ta . i lˆan cˆa . ncu ’ ad iˆe ’ m x 0 v´o . i phˆa ` ndu . da . ng Peano (n´o c˜ung c`on d u . o . . cgo . i l`a cˆong th´u . c Taylor di . aphu . o . ng). Nˆe ´ u h`am f(x)c´oda . o h`am dˆe ´ ncˆa ´ p n th`ı n´o c´o thˆe ’ biˆe ’ udiˆe ˜ n duy nhˆa ´ tdu . ´o . ida . ng: f(x)= n  k=0 a k (x − x 0 ) k + o((x − x 0 ) n ),x→ x 0 v´o . ic´achˆe . sˆo ´ a k du . o . . c t´ınh theo cˆong th´u . c: a k = f (k) (x 0 ) k! ,k=0, 1, ,n. 8.3. C´ac di . nh l´y co . ba ’ nvˆe ` h`am kha ’ vi 97 Nˆe ´ u x 0 = 0 th`ı (8.15) c´o da . ng f(x)= n  k=0 f (k) (0) k! x k + o(x n ),x→ 0 (8.17) v`a go . i l`a cˆong th´u . c Macloranh (Maclaurin). Sau d ˆay l`a cˆong th´u . c Taylor ta . i lˆan cˆa . nd iˆe ’ m x 0 =0cu ’ amˆo . tsˆo ´ h`am so . cˆa ´ p I. e x = n  k=0 x k k! + o(x n ) II. sin x = x − x 3 3! + x 5 5! + ···+ (−1) n x 2n+1 (2n + 1)! + o(x 2n+2 ) = n  k=0 (−1) k x 2k+1 (2k + 1)! + o(x 2n+2 ) III. cos x = n  k=0 (−1) k x 2k (2k!) + o(x 2n+1 ) IV. (1 + x) α =1+ n  k=1 α(α −1) (α −k +1) k! x k + o(x n ) =1+ n  k=1  α k  x k + o(x n ) α(α −1) (α − k +1) k! =            α k   nˆe ´ u α ∈ R, C k α nˆe ´ u α ∈ N. Tru . `o . ng ho . . p riˆeng: IV 1 . 1 1+x = n  k=0 (−1) k x k + o(x n ), IV 2 . 1 1 − x = n  k=0 x k + o(x n ). 98 Chu . o . ng 8. Ph´ep t´ınh vi phˆan h`am mˆo . tbiˆe ´ n V. ln(1 + x)= n  k=1 (−1) k−1 k x k + o(x n ). ln(1 − x)=− n  k=1 x k k + o(x n ). Phu . o . ng ph´ap khai triˆe ’ n theo cˆong th´u . c Taylor Nhu . vˆa . y, d ˆe ’ khai triˆe ’ n h`am f(x) theo cˆong th´u . c Taylor ta pha ’ i´ap du . ng cˆong th´u . c f(x)=T n (x)+R n+1 (x), T n (x)= n  k=0 a k (x − x 0 ) k , a k = f (k) (x 0 ) k! · (8.18) 1) Phu . o . ng ph´ap tru . . ctiˆe ´ p: du . . a v`ao cˆong th´u . c (8.18). Viˆe . csu . ’ du . ng cˆong th´u . c (8.18) dˆa ˜ nd ˆe ´ nnh˜u . ng t´ınh to´an rˆa ´ tcˆo ` ng kˆe ` nh m˘a . c d`u n´o cho ta kha ’ n˘ang nguyˆen t˘a ´ cd ˆe ’ khai triˆe ’ n. 2) Phu . o . ng ph´ap gi´an tiˆe ´ p: du . . a v`ao c´ac khai triˆe ’ n c´o s˘a ˜ n I-V sau khi d˜abiˆe ´ ndˆo ’ iso . bˆo . h`am d˜a cho v`a lu . u´ydˆe ´ n c´ac quy t˘a ´ c thu . . chiˆe . n c´ac ph´ep to´an trˆen c´ac khai triˆe ’ n Taylor. Nˆe ´ u f(x)= n  k=0 a k (x − x 0 ) k + o((x − x 0 ) n ) g(x)= n  k=0 b k (x − x 0 ) k + o((x − x 0 ) n ) th`ı a) f(x)+g(x)= n  k=0 (a k + b k )(x − x 0 ) k + o((x − x 0 ) n ); 8.3. C´ac di . nh l´y co . ba ’ nvˆe ` h`am kha ’ vi 99 b) f(x)g(x)= n  k=0 c k (x − x 0 ) k + o((x − x 0 ) n ) c k = k  p=0 a p b k−p c) F (x)=f[g(x)] = n  j=0 a j  n  k=0 (b k (x −x 0 ) k − x 0  j +o   n  k=0 b k (x −x 0 ) k − x 0  n  3) D ˆe ’ khai triˆe ’ n c´ac phˆan th´u . ch˜u . uty ’ theo cˆong th´u . c Taylor thˆong thu . `o . ng ta biˆe ’ udiˆe ˜ n phˆan th´u . cd ´odu . ´o . ida . ng tˆo ’ ng cu ’ ad ath´u . c v`a c´ac phˆan th´u . cco . ba ’ n (tˆo ´ i gia ’ n !) rˆo ` i´apdu . ng VI 1 ,IV 2 . 4) Dˆe ’ khai triˆe ’ n t´ıch c´ac h`am lu . o . . ng gi´ac thˆong thu . `o . ng biˆe ´ ndˆo ’ i t´ıch th`anh tˆo ’ ng c´ac h`am. 5) Nˆe ´ u cho tru . ´o . c khai triˆe ’ nd a . o h`am f  (x) theo cˆong th´u . c Taylor th`ı viˆe . c t`ım khai triˆe ’ n Taylor cu ’ a h`am f(x)d u . o . . c thu . . chiˆe . nnhu . sau. Gia ’ su . ’ cho biˆe ´ t khai triˆe ’ n f  (x)= n  k=0 b k (x − x 0 ) k + o((x − x 0 ) n ), b k = f (k+1) (x 0 ) k! · Khi d´otˆo ` nta . i f (n+1) (x 0 )v`adod´o h`am f(x) c´o thˆe ’ biˆe ’ udiˆe ˜ ndu . ´o . i da . ng f(x)= n+1  k=0 a k (x − x 0 ) k + o((x − x 0 ) n+1 ) = f(x 0 )+ n  k=0 a k+1 (x − x 0 ) k+1 + o((x − x 0 ) n+1 ) trong d ´o a k+1 = f (k+1) (x 0 ) (k + 1)! = f (k+1) (x 0 ) k! · 1 k +1 = b k k +1 · 100 Chu . o . ng 8. Ph´ep t´ınh vi phˆan h`am mˆo . tbiˆe ´ n Do d´o f(x)=f(x 0 )+ n  k=0 b k k +1 (x − x 0 ) k+1 + o((x − x 0 ) n+1 ) (8.19) trong d ´o b k l`a hˆe . sˆo ´ cu ’ adath´u . c Taylor dˆo ´ iv´o . i h`am f  (x). C ´ AC V ´ IDU . V´ı du . 1. Khai triˆe ’ n h`am f(x) theo cˆong th´u . c Maclaurin dˆe ´ nsˆo ´ ha . ng o(x n ), nˆe ´ u 1) f(x)=(x +5)e 2x ;2)f(x)=ln 3+x 2 − x Gia ’ i 1) Ta c´o f(x)=xe 2x +5e 2x . ´ Ap du . ng I ta thu du . o . . c f(x)=x  n−1  k=0 2 k x k k! + o(x n−1 )  +5  n  k=0 2 k x k k! + o(x n )  = n−1  k=0 2 k k! x k+1 + n  k=0 5 · 2 k k! x k + o(x n ). V`ı n−1  k=0 2 k x k+1 k! = n  k=1 2 k−1 (k −1)! x k nˆen ta c´o f(x)=5+ n  k=1  2 k−1 (k −1)! + 5 · 2 k k!  x k + o(x n ) = n  k=0 2 k−1 k! (k + 10)x k + o(x n ). 2) T`u . d˘a ’ ng th´u . c f(x)=ln 3 2 +ln  1+ x 3  −ln  1 − x 2  v`a V ta thu d u . o . . c f(x)=ln 3 2 + n  k=1 1 k  1 2 k + (−1) k−1 3 k  x k + o(x n ).  8.3. C´ac di . nh l´y co . ba ’ nvˆe ` h`am kha ’ vi 101 V´ı du . 2. Khai triˆe ’ n h`am f(x) theo cˆong th´u . c Taylor ta . i lˆan cˆa . nd iˆe ’ m x 0 = −1dˆe ´ nsˆo ´ ha . ng o((x +1) 2n )nˆe ´ u f(x)= 3x +3 √ 3 − 2x − x 2 · Gia ’ i. Ta c´o f(x)= 3(x +1)  4 − (x +1) 2 = 3 2 (x +1)  1 − (x +1) 2 4  − 1 2 . ´ Ap du . ng cˆong th´u . c IV ta thu du . o . . c f(x)= 3 2 (x +1)+ 3 2 (x +1) n−1  k=1   − 1 2 k   (−1) k (x +1) 2k 4 k + o((x +1) 2n ) trong d ´o   − 1 2 k   (−1) k =(−1) k  − 1 2  − 1 2 − 1   − 1 2 −(k − 1)  k! = (2k −1)!! 2 k k! · Do d ´o f(x)= 3 2 (x +1)+ n−1  k=1 3(2k −1)!! 2 3k+1 k! (x +1) 2k+1 + o((x +1) 2n ).  V´ı du . 3. Khai triˆe ’ n h`am f(x) theo cˆong th´u . c Taylor ta . i lˆan cˆa . nd iˆe ’ m x 0 =2dˆe ´ nsˆo ´ ha . ng o((x −2) n ), nˆe ´ u f(x)=ln(2x −x 2 +3). Gia ’ i. Ta biˆe ’ udiˆe ˜ n 2x − x 2 +3=(3− x)(x + 1) = [1 − (x − 2)][3 + (x − 2)] = 3[1 − (x − 2)]  1+ x − 2 3  . 102 Chu . o . ng 8. Ph´ep t´ınh vi phˆan h`am mˆo . tbiˆe ´ n T`u . d ´o suy ra r˘a ` ng f(x) = ln3 + ln[1 −(x − 2)] + ln  1+ x − 2 3  v`a ´ap du . ng cˆong th´u . cVtathud u . o . . c f(x) = ln3 − n  k=1 1 k (x − 2) k + n  k=1 (−1) k−1 (x − 2) k k3 k + o((x − 2) n ) = ln3 + n  k=1  (−1) k−1 3 k − 1  (x − 2) k k + o((x − 2) n ).  V´ı du . 4. Khai triˆe ’ n h`am f(x) = ln cos x theo cˆong th ´u . c Maclaurin dˆe ´ nsˆo ´ ha . ng ch´u . a x 4 . Gia ’ i. ´ Ap du . ng III ta thu du . o . . c ln(cos x)=ln  1 − x 2 2 + x 4 24 + o(x 4 )  = ln(1 + t), trong d´otad˘a . t t = − x 2 2 + x 4 24 + o(x 4 ). Tiˆe ´ p theo ta ´ap du . ng khai triˆe ’ nV ln(cos x) = ln(1 + t)=t − t 2 2 + o(t 2 ) =  − x 2 2 + x 4 24 + o(x 4 ) − 1 2  − x 2 2 + x 4 4 + o(x 4 )  2  + o   − x 2 2 + x 4 24 + o(x 4 )  2  = − x 2 2 + x 4 24 − x 4 8 + o(x 4 )=− x 2 2 − x 4 12 + o(x 4 ).  V´ı du . 5. Khai triˆe ’ n h`am f(x)=e x cos x theo cˆong th´u . c Maclaurin d ˆe ´ nsˆo ´ ha . ng ch´u . a x 3 . Gia ’ i. Khai triˆe ’ ncˆa ` n t`ım pha ’ ic´oda . ng e x cos x = 3  k=0 a k x k + o(x 3 ). 8.3. C´ac di . nh l´y co . ba ’ nvˆe ` h`am kha ’ vi 103 V`ı x cos x = x +0(x), (x cos x) k = x k + o(x k ), k =1, 2, nˆen trong cˆong th´u . c e w = n  k=0 w k k! + o(w n ),w= x cos x ta cˆa ` nlˆa ´ y n = 3. Ta c´o w = x cos x = x − x 3 2! + o(x 4 ) w 2 = x 2 + o(x 3 ),w 3 = x 3 + o(x 3 ) v`a do d´o e x cos x = 3  k=0 w k k! + o(w 3 ) =1+x − x 3 2! + o(x 4 )+ 1 2  x 2 +0(x 3 )  + 1 3!  x 3 + o(x 3 )  +0(x 3 ) =1+x + 1 2 x 2 − 1 3 x 3 + o(x 3 ).  V´ı du . 6. Khai triˆe ’ n theo cˆong th´u . c Maclaurin d ˆe ´ n o(x 2n+1 )dˆo ´ iv´o . i c´ac h`am 1) arctgx, 2) arc sin x. Gia ’ i. 1) V`ı (arctgx)  = 1 1+x 2 = n  k=0 (−1) k x 2k + o(x 2n+1 ) nˆen theo cˆong th´u . c (8.19) ta c´o arctgx = n  k=0 (−1) k x 2k+1 (2k +1) + o(x 2n+2 ). V´o . i n =2tathud u . o . . c arctgx = x − x 3 3 + x 5 5 + o(x 6 ) 104 Chu . o . ng 8. Ph´ep t´ınh vi phˆan h`am mˆo . tbiˆe ´ n 2) Ta c´o (arcsinx)  = 1 √ 1 − x 2 =1+ n  k=1 (−1) k   − 1 2 k   x 2k + o(x 2n+1 ) =1+ n  k=1 (−1) k (2k − 1)!! 2 k k! x 2k + o(x 2n+1 ). T`u . d´o ´ap du . ng cˆong th´u . c (8.19) ta c´o arc sin x = x + n  k=0 (2k −1)!! 2 k k!(2k +1) x 2k+1 + o(x 2n+2 ). V´o . i n =2tathudu . o . . c arc sin x = x + 1 6 x 3 + 3 40 x 5 + o(x 6 ).  V´ı du . 7. Khai triˆe ’ n h`am f(x)=tgx theo cˆong th´u . c Maclaurin d ˆe ´ n o(x 5 ). Gia ’ i. Ta s˜e d`ung phu . o . ng ph´ap hˆe . sˆo ´ bˆa ´ tdi . nh m`a nˆo . i dung du . o . . c thˆe ’ hiˆe . n trong l`o . i gia ’ i sau dˆa y . V`ıtgx l`a h`am le ’ v`a tgx = x + o(x)nˆen tgx = x + a 3 x 3 + a s x 5 + o(x 6 ). Ta su . ’ du . ng cˆong th´u . c sin x =tgx·cos x v`a c´ac khai triˆe ’ nIIv`aIII ta c´o x − x 3 3 + x 5 5 + o(x 6 )=  x + a 3 x 3 + a 5 x 5 + o(x 6 )   1 − x 2 2! + x 4 4! +0(x 5 )  Cˆan b˘a ` ng c´ac hˆe . sˆo ´ cu ’ a x 3 v`a x 5 o . ’ hai vˆe ´ ta thu d u . o . . c      − 1 6 = − 1 2 + a 3 1 5! = 1 4! − a 3 2! + a 5 [...]... 9.2 - a ´ Dao h`m riˆng cˆp 1 110 e a - a ´ Dao h`m riˆng cˆp cao 113 e a ´ ` ’ Vi phˆn cua h`m nhiˆu biˆn 125 a a e e 9.2.1 9.2.2 ´ ’ Ap dung vi phˆn dˆ t´ gˆn d´ng 126 a e ınh ` a u 9.2.3 ´ C´c t´ chˆt cua vi phˆn 1 27 a ınh a ’ a 9.2.4 ´ Vi phˆn cˆp cao 1 27 a a 9.2.5 Cˆng th´.c Taylor 129 o u 9.2.6 9.3 ´ Vi phˆn cˆp... kha vi a y e 1 07 13 f (x) = sin x sin 3x n (−1)k 22k−1 (DS (1 − 22k )x2k + o(x2n+1 )) (2k)! k=0 ’ ’ ´ Khai triˆn h`m theo cˆng th´.c Taylor trong lˆn cˆn diˆm x0 dˆn e a o u e e a a o((x − x0)n ) (14-20)   1 n √  2  (x − 1)k + o((x − 1)n )) 14 f (x) = x, x0 = 1 (DS k=0 k 15 f (x) = (x2 − 1)e2x, x0 = −1 n e−2 2k−2 (k − 5) (DS (x + 1)k + o((x + 1)n )) (k − 1)! k=1 16 f (x) = ln(x2 − 7x + 12), x0 =... 3x 5 f (x) = ln(x2 + 3x + 2) n (−1)k−1 (1 + 2−k )xk + o(xn )) (DS ln2 + k k=1 (−1)k−1 − 2−k k x + o(xn )) k k=1 n 6 f (x) = ln(2 + x − x2) (DS ln2 + 1 − 2x2 2 + x − x2 n (−1)k+1 − 7 · 2−(k+1) 1 xk + o(xn )) (DS + 2 k=1 3 7 f (x) = n 5 3x2 + 5x − 5 (DS + (−1)k 2−(k+1) − 1 xk + o(xn )) 8 f (x) = 2 x +x−2 2 k=1 ’ ´ e Khai trˆn h`m theo cˆng th´.c Maclaurin dˆn 0(x2n+1 ) (9-13) e a o u 9 f (x) = sin2... lim (DS 2) x→0 x − sin x tgx + 2 sin x − 3x (DS 0) 22 lim x→0 x4 20 f (x) = ´ Chu.o.ng 8 Ph´p t´nh vi phˆn h`m mˆt biˆn e ı a a o e 108 ex − e−x − 2 x→0 x2 1 1 24 lim − x→0 x sin x 23 lim x2 25 26 27 28 (DS 1) (DS 0) cos x − e− 2 1 (DS − ) lim 4 x→0 x 12 √ 2 cos x 1 1− 1+x lim (DS ) 4 x→0 x 3 2 x ln cos x + 1 2 lim (DS − ) x→0 x(sin x − x) 4 √ 3 19 sin(sin x) − x 1 − x2 ) (DS lim 5 x→0 x 90 Chu.o.ng... o((x + 1)n )) (k − 1)! k=1 16 f (x) = ln(x2 − 7x + 12), x0 = 1 n 2−k + 3−k (DS ln6 − (x − 1)k + o(x − 1)n )) k k=1 (x − 1)x−2 , x0 = 2 3−x n 1 (−1)k (DS (x − 2) + + (x − 2)k + o((x − 2)n )) k k−1 k=2 17 f (x) = ln 18 f (x) = (x − 2)2 , x0 = 2 3−x n (DS (x − 2)k + o((x − 2)n )) k=2 2 19 f (x) = x − 3x + 3 , x = 3 x−2 n (DS 3 + (−1)k (x − 3)k + o((x − 3)n )) k=2 2 x + 4x + 4 , x0 = 2 x2 + 10x + 25 n (−1)k... vi phˆn h`m nhiˆu biˆn e ınh a a e e 110 9.3.1 9.3.2 9.3.3 9.1 9.1.1 Cu.c tri 145 Cu.c tri c´ diˆu kiˆn 146 e e o ` ´ ´ Gi´ tri l´.n nhˆt v` b´ nhˆt cua h`m 1 47 a o a a e a ’ a - Dao h`m riˆng a e - ´ Dao h`m riˆng cˆp 1 a e a ’ ’ ’ Gia su w = f (M), M = (x, y) x´c dinh trong lˆn cˆn n`o d´ cua diˆm a a a o ’ e a ’ ˜ ´ ´ e o u ´ a u M(x, y) Tai diˆm M ta . d ˆe ’ t´ınh gˆa ` nd´ung . . . . . 126 9.2.3 C´ac t´ınh chˆa ´ tcu ’ aviphˆan 1 27 9.2.4 Vi phˆan cˆa ´ pcao 1 27 9.2.5 Cˆong th´u . cTaylor 129 9.2.6 Vi phˆan cu ’ ah`amˆa ’ n 130 9.3 Cu . . c. ln(2 + x −x 2 ). (DS. ln2 + n  k=1 (−1) k−1 − 2 −k k x k + o(x n )) 7. f(x)= 1 − 2x 2 2+x − x 2 . (DS. 1 2 + n  k=1 (−1) k+1 − 7 · 2 −(k+1) 3 x k + o(x n )) 8. f(x)= 3x 2 +5x −5 x 2 + x − 2 .(D S. 5 2 + n  k=1  (−1) k 2 −(k+1) −1  x k +. −5) (k −1)! (x +1) k + o((x +1) n )) 16. f(x) = ln(x 2 −7x + 12), x 0 =1. (D S. ln6 − n  k=1 2 −k +3 −k k (x − 1) k + o(x − 1) n )) 17. f(x)=ln (x − 1) x−2 3 − x , x 0 =2. (D S. (x − 2) + n  k=2  1 k + (−1) k k

Ngày đăng: 13/07/2014, 23:20

TỪ KHÓA LIÊN QUAN