1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập toán cao cấp part 8 doc

16 384 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 253,5 KB

Nội dung

9.1. D - a . o h`am riˆeng 111 2. Tu . o . ng tu . . :nˆe ´ utˆo ` nta . i gi´o . iha . n lim ∆y→0 ∆ y w ∆y = lim ∆y→0 f(x, y +∆y) −f(x, y) ∆y th`ı gi´o . iha . nd ´odu . o . . cgo . il`ad a . o h`am riˆeng cu ’ a h`am f(x, y) theo biˆe ´ n y ta . idiˆe ’ m M(x, y)v`adu . o . . cchı ’ bo . ’ imˆo . t trong c´ac k´yhiˆe . u ∂w ∂y , ∂f(x, y) ∂y ,f  y (x, y),w  y . T`u . di . nh ngh˜ıa suy r˘a ` ng da . o h`am riˆeng cu ’ a h`am hai biˆe ´ n theo biˆe ´ n x l`a da . o h`am thˆong thu . `o . ng cu ’ a h`am mˆo . tbiˆe ´ n x khi cˆo ´ di . nh gi´a tri . cu ’ abiˆe ´ n y.Dod ´o c ´a c da . o h`am riˆeng du . o . . c t´ınh theo c´ac quy t˘a ´ cv`a cˆong th´u . c t´ınh da . o h`am thˆong thu . `o . ng cu ’ a h`am mˆo . tbiˆe ´ n. Nhˆa . nx´et. Ho`an to`an tu . o . ng tu . . ta c´o thˆe ’ di . nh ngh˜ıa da . o h`am riˆeng cu ’ a h`am ba (ho˘a . c nhiˆe ` uho . n ba) biˆe ´ nsˆo ´ . 9.1.2 D - a . o h`am cu ’ a h`am ho . . p Nˆe ´ u h`am w = f(x, y), x = x(t), y = y(t)th`ıbiˆe ’ uth´u . c w = f[x(t),y(t)] l`a h`am ho . . pcu ’ a t. Khi d ´o dw dt = ∂w ∂x · dx dt + ∂w ∂y · dy dt · (9.1) Nˆe ´ u w = f(x, y), trong d ´o x = x(u, v), y = y(u, v)th`ı        ∂w ∂u = ∂w ∂x ∂x ∂u + ∂w ∂y ∂y ∂u , ∂w ∂v = ∂w ∂x ∂x ∂v + ∂w ∂y ∂y ∂v · (9.2) 9.1.3 H`am kha ’ vi Gia ’ su . ’ h`am w = f(M) x´ac d i . nh trong mˆo . t lˆan cˆa . n n`ao d´ocu ’ adiˆe ’ m M(x, y). H`am f du . o . . cgo . i l`a h`am kha ’ vi ta . idiˆe ’ m M(x, y)nˆe ´ usˆo ´ gia 112 Chu . o . ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe ` ubiˆe ´ n ∆f(M)=f(x +∆,y+∆y) − f(x, y)cu ’ a h`am khi chuyˆe ’ nt`u . d iˆe ’ m M(x, y)dˆe ´ ndiˆe ’ N(x +∆,y+∆y) c´o thˆe ’ biˆe ’ udiˆe ˜ ndu . ´o . ida . ng ∆f(M)=D 1 ∆x + D 2 ∆y + o(ρ),ρ→ 0 trong d ´o ρ =  ∆x 2 +∆y 2 . Nˆe ´ u h`am f( x, y) kha ’ vi ta . id iˆe ’ m M(x, y)th`ı ∂f ∂x (M)=D 1 , ∂f ∂y (M)=D 2 v`a khi d´o ∆f(M)= ∂f ∂x (M)∆x + ∂f ∂y ∆y + o(ρ),ρ→ 0. (9.3) 9.1.4 D - a . o h`am theo hu . ´o . ng Gia ’ su . ’ : (1) w = f(M) l`a h`am x´ac di . nh trong lˆan cˆa . n n`ao d´o c u ’ adiˆe ’ m M(x, y); (2) e = (cos α, cos β) l`a vecto . do . nvi . trˆen du . `o . ng th˘a ’ ng c´o hu . ´o . ng L qua diˆe ’ m M(x, y); (3) N = N(x +∆x, y +∆y)l`adiˆe ’ m thuˆo . c L v`a ∆e l`a dˆo . d`ai cu ’ a doa . n th˘a ’ ng MN. Nˆe ´ utˆo ` nta . i gi´o . iha . nh˜u . uha . n lim ∆→0 (N→M) ∆w ∆ th`ı gi´o . iha . nd´odu . o . . cgo . il`ada . o h`am ta . idiˆe ’ m M(x, y) theo hu . ´o . ng cu ’ a vecto . e v`a du . o . . ck´yhiˆe . ul`a ∂w ∂e ,t´u . cl`a ∂w ∂e = lim ∆→0 ∆w ∆ · 9.1. D - a . o h`am riˆeng 113 Da . o h`am theo hu . ´o . ng cu ’ a vecto . e = (cos α,cos β)d u . o . . c t´ınh theo cˆong th´u . c ∂f ∂e = ∂f ∂x (M) cos α + ∂f ∂y (M) cos β. (9.4) trong d ´o cos α v`a cos β l`a c´ac cosin chı ’ phu . o . ng cu ’ a vecto . e . Vecto . v´o . i c´ac to . ad ˆo . ∂f ∂x v`a ∂F ∂y (t ´u . c l`a vecto .  ∂f ∂x , ∂f ∂y  )d u . o . . cgo . i l`a vecto . gradiˆen cu ’ a h`am f(M)ta . id iˆe ’ m M(x, y)v`adu . o . . ck´yhiˆe . ul`a gradf(M). T`u . d´o d a . o h`am theo hu . ´o . ng ∂f ∂e c´o biˆe ’ uth´u . cl`a ∂f ∂e =  gradf,e  . Ta lu . u´yr˘a ` ng: 1) Nˆe ´ u h`am w = f(x, y) kha ’ vi ta . idiˆe ’ m M(x, y) th`ı n´o liˆen tu . cta . i M v`a c´o c´ac da . o h`am riˆeng cˆa ´ p1ta . id´o ; 2) N´eu h`am w = f(x, y) c´o c´ac d a . o h`am riˆeng cˆa ´ p 1 theo mo . ibiˆe ´ n trong lˆan cˆa . nn`aod´ocu ’ adiˆe ’ m M(x, y) v`a c´ac da . o h`am riˆeng n`ay liˆen tu . cta . idiˆe ’ m M(x, y) th`ı n´o kha ’ vi ta . idiˆe ’ m M. Nˆe ´ u h`am f( x, y) kha ’ vi ta . id iˆe ’ m M(x, y) th`ı n´o c´o da . o h`am theo mo . ihu . ´o . ng ta . idiˆe ’ md´o . Ch´u´y.Nˆe ´ u h`am f(x, y)c´oda . o h`am theo mo . ihu . ´o . ng ta . idiˆe ’ m M 0 th`ı khˆong c´o g`ıda ’ mba ’ o l`a h`am f(x, y) kha ’ vi ta . idiˆe ’ m M 0 (xem v´ı du . 4). 9.1.5 D - a . o h`am riˆeng cˆa ´ p cao Gia ’ su . ’ miˆe ` n D ⊂ R 2 v`a f : D → R 114 Chu . o . ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe ` ubiˆe ´ n l`a h`am hai biˆe ´ n f(x, y)du . o . . c cho trˆen D.Tad ˘a . t D x =  (x, y) ∈ D : ∃ ∂f ∂x = ±∞  , D y =  (x, y) ∈ D : ∃ ∂f ∂y = ±∞  . D ∗ = D x ∩ D y D - i . nh ngh˜ıa. 1) C´ac da . o h`am riˆeng ∂f ∂x v`a ∂f ∂y du . o . . cgo . i l`a c´ac d a . o h`am riˆeng cˆa ´ p1. 2) Nˆe ´ u h`am ∂f ∂x : D x → R v`a ∂f ∂y : D y → R c´o c´ac da . o h`am riˆeng ∂ ∂x  ∂f ∂x  = ∂ 2 f ∂x∂x = ∂ 2 f ∂x 2 , ∂ ∂y  ∂f ∂x  = ∂ 2 f ∂x∂y , ∂ ∂x  ∂f ∂y  = ∂ 2 f ∂y∂x , ∂ ∂y  ∂f ∂y  = ∂ 2 f ∂y∂y = ∂ 2 f ∂y 2 th`ı ch´ung du . o . . cgo . i l`a c´ac da . o h`am riˆeng cˆa ´ p2theo x v`a theo y. C´ac da . o h`am riˆeng cˆa ´ p3du . o . . cdi . nh ngh˜ıa nhu . l`a c´ac da . o h`am riˆeng cu ’ ada . o h`am riˆeng cˆa ´ p 2, v.v Ta lu . u´yr˘a ` ng nˆe ´ u h`am f(x, y) c´o c´ac da . o h`am hˆo ˜ nho . . p ∂ 2 f ∂x∂y v`a ∂ 2 f ∂y∂x liˆen tu . cta . idiˆe ’ m(x,y) th`ı ta . idiˆe ’ md´o c´ac da . o h`am hˆo ˜ nho . . p n`ay b˘a ` ng nhau: ∂ 2 f ∂x∂y = ∂ 2 f ∂y∂x · C ´ AC V ´ IDU . 9.1. D - a . o h`am riˆeng 115 V´ı du . 1. T´ınh da . o h`am riˆeng cˆa ´ p1cu ’ a c´ac h`am 1) 4w = x 2 − 2xy 2 + y 3 .2)w = x y . Gia ’ i. 1) D a . o h`am riˆeng ∂w ∂x du . o . . c t´ınh nhu . l`a d a . o h`am cu ’ a h`am w theo biˆe ´ n x v´o . i gia ’ thiˆe ´ t y = const. Do d´o ∂w ∂x =(x 2 − 2xy 2 + y 3 )  x =2x − 2y 2 +0=2(x −y 2 ). Tu . o . ng tu . . , ta c´o ∂w ∂y =(x 2 −2xy 2 + y 3 )  y =0−4xy +3y 2 = y(3y − 4x). 2) Nhu . trong 1), xem y = const ta c´o ∂w ∂x =  x y   x = yx y−1 . Tu . o . ng tu . . , khi xem x l`a h˘a ` ng sˆo ´ ta thu d u . o . . c ∂w ∂y = x y lnx. (v`ı w = x y l`a h`am m˜udˆo ´ iv´o . ibiˆe ´ n y khi x = const.  V´ı d u . 2. Cho w = f(x, y)v`ax = ρ cos ϕ, y = ρ sin ϕ. H˜ay t´ınh ∂w ∂ρ v`a ∂w ∂ϕ . Gia ’ i. D ˆe ’ ´ap du . ng cˆong th´u . c (9.2), ta lu . u´yr˘a ` ng w = f( x, y)=f(ρ cos ϕ, ρ sin ϕ)=F (ρ, ϕ). Do d´o theo (9.2) v`a biˆe ’ uth´u . cdˆo ´ iv´o . i x v`a y ta c´o ∂w ∂ρ = ∂w ∂x ∂x ∂ρ + ∂w ∂y ∂y ∂ρ = ∂w ∂x cos ϕ + ∂w ∂y sin ϕ ∂w ∂ϕ = ∂w ∂x ∂x ∂ϕ + ∂w ∂y ∂y ∂ϕ = ∂w ∂x (−ρ sin ϕ)+ ∂w ∂y (ρ cos ϕ) = ρ  − ∂w ∂x sin ϕ + ∂w ∂y cos ϕ  .  116 Chu . o . ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe ` ubiˆe ´ n V´ı du . 3. T´ınh da . o h`am cu ’ a h`am w = x 2 + y 2 x ta . idiˆe ’ m M 0 (1, 2) theo hu . ´o . ng cu ’ a vecto . −→ M 0 M 1 , trong d´o M 1 l`a diˆe ’ mv´o . ito . ad ˆo . (3, 0). Gia ’ i. D ˆa ` u tiˆen ta t`ım vecto . d o . nvi . e c´o hu . ´o . ng l`a hu . ´o . ng d ˜a cho. Ta c´o −→ M 0 M 1 =(2,−2)=2e 1 − 2e 2 , ⇒| −→ M 0 M 1 | =2 √ 2 ⇒ e = M 0 M 1 |M 0 M 1 | = 2e 1 − 2e 2 2 √ 2 = 1 √ 2 e 1 − 1 √ 2 e 2 . trong d ´o e 1 , e 2 l`a vecto . do . nvi . cu ’ a c´ac tru . cto . adˆo . .T`u . d´o suy r˘a ` ng cos α = 1 √ 2 , cos β = − 1 √ 2 · Tiˆe ´ p theo ta t´ınh c´ac d a . o h`am riˆeng ta . idiˆe ’ m M 0 (1, 2). Ta c´o f  x =2x + y 2 ⇒ f  x (M 0 )=f  x (1, 2)=6, f  y =2xy ⇒ f  y (M 0 )=f  y (1, 2)=4. Do d ´o theo cˆong th´u . c (9.4) ta thu d u . o . . c ∂f ∂e =6· 1 √ 2 − 4 · 1 √ 2 = √ 2.  V´ı d u . 4. H`am f( x, y)=x + y +  |xy| c´o da . o h`am theo mo . ihu . ´o . ng ta . idiˆe ’ m O(0, 0) nhu . ng khˆong kha ’ vi ta . id´o. Gia ’ i. 1. Su . . tˆo ` nta . id a . o h`am theo mo . ihu . ´o . ng. Ta x´et hu . ´o . ng cu ’ a vecto . e d irat`u . Ov`alˆa . pv´o . i tru . c Ox g´oc α.Ta c´o ∆ e f(0, 0) = ∆x +∆y +  |∆x∆y| =  cos α + sin α +  |cos α sin α|  ρ, 9.1. D - a . o h`am riˆeng 117 trong d´o ρ =  ∆x 2 +∆y 2 ,∆x = ρ cos α,∆y = ρ sin α. T`u . d ´o suy ra ∂f ∂e (0, 0) = lim ρ→0 ∆ e f(0, 0) ρ = cos α + sin α +  |sin α cos α| t´u . cl`ad a . o h`am theo hu . ´o . ng tˆo ` nta . i theo mo . ihu . ´o . ng. 2. Tuy nhiˆen h`am d ˜a cho khˆong kha ’ vi ta . i O. Thˆa . tvˆa . y, ta c´o ∆f(0, 0) = f(∆x, ∆y) −f(0 , 0)=∆x +∆y +  |∆x||∆y|−0. V`ı f  x =1v`af  y = 1 (ta . i sao ? ) nˆen nˆe ´ u f kha ’ vi ta . i O(0, 0) th`ı ∆f(0, 0) = ∆x +∆y +  |∆x∆y| =1·∆x +1· ∆y + ε(ρ)ρ ε(ρ) → 0(ρ → 0),ρ=  ∆x 2 +∆y 2 hay l`a lu . u´y∆x = ρ cos α,∆y = ρ sin α ta c´o ε(ρ)=  |cos α sinα|. Vˆe ´ pha ’ id˘a ’ ng th´u . c n`ay khˆong pha ’ i l`a vˆo c`ung b´e khi ρ → 0 (v`ı n´o ho`an to`an khˆong phu . thuˆo . c v`ao ρ). Do d ´o theo di . nh ngh˜ıa h`am f(x, y) d˜a cho khˆong kha ’ vi ta . idiˆe ’ mO. V´ı du . 5. T´ınh c´ac d a . o h`am riˆeng cˆa ´ p2cu ’ a c´ac h`am: 1) w = x y ,2)w = arctg x y · Gia ’ i. 1) D ˆa ` u tiˆen t´ınh c´ac da . o h`am riˆeng cˆa ´ p1.Tac´o ∂w ∂x = yx y−1 , ∂w ∂y = x y lnx. Tiˆe ´ p theo ta c´o ∂ 2 w ∂x 2 = y(y −1)x y−2 , ∂ 2 w ∂y∂x = x y−1 + yx y−1 lnx = x y−1 (1 + ylnx), ∂ 2 w ∂x∂y = yx y−1 lnx + x y · 1 x = x y−1 (1 + ylnx), ∂ 2 f ∂y 2 = x y (lnx) 2 . 118 Chu . o . ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe ` ubiˆe ´ n 2) Ta c´o ∂w ∂x = y x 2 + y 2 , ∂w ∂y = − x x 2 + y 2 · T`u . d ´o ∂ 2 w ∂x 2 = ∂ ∂x  y x 2 + y 2  = − 2xy (x 2 + y 2 ) 2 , ∂ 2 w ∂y 2 = ∂ ∂y  −x x 2 + y 2  = 2xy x 2 + y 2 , ∂ 2 w ∂x∂y = ∂ ∂y  y x 2 + y 2  = x 2 − y 2 (x 2 + y 2 ) 2 , ∂ 2 w ∂y∂x = ∂ ∂x  − x x 2 + y 2  = x 2 −y 2 (x 2 + y 2 ) 2 · Nhˆa . nx´et. Trong ca ’ 1) lˆa ˜ n2)tadˆe ` uc´o ∂ 2 w ∂x∂y = ∂ 2 w ∂y∂x .  V´ı d u . 6. T´ınh c´ac da . o h`am riˆeng cˆa ´ p1cu ’ a h`am w = f(x+y 2 ,y+x 2 ) ta . id iˆe ’ m M 0 (−1, 1), trong d´o x v`a y l`a biˆe ´ ndˆo . clˆa . p. Gia ’ i. D ˘a . t t = x + y 2 , v = y + x 2 . Khi d´o w = f( x + y 2 ,y+ x 2 )=f(t, v). Nhu . vˆa . y w = f( t, v) l`a h`am ho . . pcu ’ a hai biˆe ´ ndˆo . clˆa . p x v`a y. N´o phu . thuˆo . c c´ac biˆe ´ ndˆo . clˆa . p thˆong qua hai biˆe ´ n trung gian t, v. Theo cˆong th ´u . c (9.2) ta c´o: ∂w ∂x = ∂f ∂t · ∂t ∂x + ∂f ∂v · ∂v ∂x = f  t (x + y 2 ,y+ x 2 ) ·1+f  v (x + y 2 ,y+ x 2 ) ·2x = f  t +2xf  v . 9.1. D - a . o h`am riˆeng 119 ∂w ∂x (−1, 1) = ∂f ∂x (0, 2) = f  t (0, 2) −2f  v (0, 2) ∂w ∂y = ∂f ∂t · ∂t ∂y + ∂f ∂v · ∂v ∂y = f  t (·)2y + f  v (·)1 =2yf  t + f  v ∂w ∂y (−1, 1) = ∂f ∂y (0, 2)=2f  t (0, 2) + f  v (0, 2).  B ` AI T ˆ A . P T´ınh d a . o h`am riˆeng cu ’ a c´ac h`am sau dˆay 1. f(x, y)=x 2 + y 3 +3x 2 y 3 . (DS. f  x =2x +6xy 3 , f  y =3y 2 +9x 2 y 2 ) 2. f(x, y, z)=xyz + x yz . (DS. f  x = yz + 1 yz , f  y = xz − x y 2 z , f  z = xy − x yz 2 ) 3. f(x, y, z) = sin(xy + yz). (D S. f  x = y cos(xy + yz), f  y =(x + z) cos(xy + yz), f  z = y cos(xy + yz)) 4. f(x, y) = tg(x + y)e x/y . (D S. f  x = e x/y cos 2 (x + y) + tg(x + y)e x/y 1 y , f  y = e x/y cos 2 (x + y) + tg(x + y)e x/y  − x y 2  .) 5. f = arc sin x  x 2 + y 2 .(DS. f  x = |y| x 2 + y 2 , f  y = −xsigny x 2 + y 2 ) 6. f(x, y)=xyln(xy). (DS. f  x = yln(xy)+y, f  y = xln(xy)+x) 120 Chu . o . ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe ` ubiˆe ´ n 7. f( x, y, z)=  y x  z . (DS. f  x = z  y x  z−1  − y x 2  = − z x  y x  z , f  y = z y  y x  z ,f  z =  y x  z ln y x ) 8. f( x, y, z)=z x/y . (D S. f  x = x x/y lnz ·  1 y  , f  y = z x/y lnz ·  −x y 2  , f  z =  x y  z x/y−1 ) 9. f( x, y, z)=x y z . (DS. f  x = y z x y z −1 , f  y = x y z zy z−1 lnx, f  z = x y z ln(x) z lny) 10. f( x, y, z)=x y y z z x . (DS. f  x = x y−1 y z+1 z x + x y y z z x lnz, f  y = x y lnxy z z x + x y y z−1 z x+1 , f  z = x y y z lny · z x + x y+1 y z z x−1 ) 11. f( x, y) = ln sin x + a √ y . (D S. f  x = 1 √ y cotg x + a √ y , f  y = − x + a y cotg x + a √ y ) 12. f( x, y)= x y − e x arctgy. (DS. f  x = 1 y − e x arctgy, f  y = − x y 2 − e x 1+y 2 ) 13. f( x, y)=ln  x +  x 2 + y 2  . (D S. f  x = 1  x 2 + y 2 , f  y = 1 x +  x 2 + y 2 · y  x 2 + y 2 ). T`ım da . o h`am riˆeng cu ’ a h`am ho . . p sau d ˆay (gia ’ thiˆe ´ t h`am f(x, y) kha ’ vi) 14. f( x, y)=f(x + y, x 2 + y 2 ). (DS. f  x = f  t + f  v 2x, f  y = f  t + f  v 2y, t = x + y, v = x 2 + y 2 ) 15. f( x, y)=f  x y , y x  . [...]... hu.´.ng gradien cua h`m d´ (DS ) 5 ´.ng cua vecto gradien cua h`m ’ ’ a 53 T` gi´ tri v` hu o ım a a w = tgx − x + 3 sin y − sin3 y + z + cotgz π π π ’ tai diˆm M0 , , e 4 3 2 3 8 3 (DS (gradw)M = i + j, cos α = √ , cos β = √ ) 8 73 73 z ’ ’ a tai diˆm M0 (1, 1, 1) 54 T` dao h`m cua h`m w = arc sin ım a e x2 + y 2 −→ 1 o o theo hu.´.ng vecto M0 M, trong d´ M = (3, 2, 3) (DS ) 6 9.2 ´ ` ’ Vi phˆn cua... fxy = −z sin t, fxz = −y sin t, fyy = −z 2 sin t, fyz = −yz sin t, fzz = −y 2 sin t, t = x + yz) ∂ 2f ´ nˆu f = x2 + y 2 ex+y e ∂x∂y ex+y − xy + (x + y)(x2 + y 2) + (x2 + y 2)2 ) (DS 2 2 )3/2 (x + y 28 T´ ınh ∂ 2f ∂ 2f ∂ 2f ´ , , nˆu f = xyz e ∂x∂y ∂y∂z ∂x∂z (DS fxy = xyz−1 z(1 + yzlnx), fxz = xyz−1 y(1 + yzlnx), fyz = lnx · xyz (1 + yzlnx)) 29 T´ ınh x+y ∂ 2f ∂ 2f ´ nˆu f = arctg e (DS = 0) 30 T´... x2 ftt − 2 2 ftv + 4 fvv + 3 fv , y y y x t = xy, v = ) y uxy = xyftt − uyy 37 u = f (sin x + cos y) (DS uxx = cos2 x · f − sin x · f , uxy = − sin y cos x · f , uyy = sin2 y · f − cos y · f ) ` a a 38 Ch´.ng minh r˘ng h`m u f= (x−x0 )2 1 √ e− 4a2 t 2a πt ` ´ ’ ınh e e (trong d´ a, x0 l` c´c sˆ) thoa m˜n phu.o.ng tr` truyˆn nhiˆt o a a o a ∂ 2f ∂f = a2 2 · ∂t ∂x ´ ` Chu.o.ng 9 Ph´p t´ vi phˆn h`m... T` dao h`m cua h`m f (x, y) = ln x2 + y 2 tai diˆm M(1, 1) ım a a e √ 2 ` ´ o a a ’ o a u a ) theo hu.´.ng phˆn gi´c cua g´c phˆn tu th´ nhˆt (DS 2 ´ ` 9.2 Vi phˆn cua h`m nhiˆu biˆn a ’ a e e ’ ’ 48 T` dao h`m cua h`m f (x, y, z) = z 2 − 3xy + 5 tai diˆm ım a a e ´.ng lˆp v´.i c´c truc toa dˆ nh˜.ng g´c b˘ng nhau ` a o a o a M(1, 2,√ theo hu o −1) o u 3 (DS − ) 3 ´ ’ a 49 T` dao h`m cua h`m... y) = f (x − y, xy) (DS fx = ft + yfv , fy = −ft + xfv , t = x − y, v = xy) 17 f (x, y) = f (x − y 2, y − x2 , xy) (DS fx = ft − 2xfv + yfw , fy = −2yft + fv + xfw , t = x − y 2, v = y − x2, w = xy) √ 18 f (x, y, z) = f ( x2 + y 2 , y 2 + z 2, z 2 + x2 ) (DS fx = fz = v= xft xfw yft yf , fy = +√ v , z 2 + x2 x2 + z 2 x2 + y 2 x2 + y 2 zfv zf + √ w , t = x2 + y 2 , 2 + y2 z 2 + x2 x √ y 2 + z 2 , w = . − sin 3 y + z + cotgz ta . idiˆe ’ m M 0  π 4 , π 3 , π 2  . (D S. (gradw) M =  i + 3 8  j, cos α = 8 √ 73 , cos β = 3 √ 73 ) 54. T`ım da . o h`am cu ’ a h`am w = arc sin z  x 2 + y 2 ta . idiˆe ’ m. x y−1 (1 + ylnx), ∂ 2 w ∂x∂y = yx y−1 lnx + x y · 1 x = x y−1 (1 + ylnx), ∂ 2 f ∂y 2 = x y (lnx) 2 . 1 18 Chu . o . ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe ` ubiˆe ´ n 2) Ta c´o ∂w ∂x = y x 2 + y 2 , ∂w ∂y =. z  y x  z−1  − y x 2  = − z x  y x  z , f  y = z y  y x  z ,f  z =  y x  z ln y x ) 8. f( x, y, z)=z x/y . (D S. f  x = x x/y lnz ·  1 y  , f  y = z x/y lnz ·  −x y 2  , f  z =  x y  z x/y−1 ) 9.

Ngày đăng: 13/07/2014, 23:20

TỪ KHÓA LIÊN QUAN