1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập toán cao cấp part 9 pdf

16 394 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 246,21 KB

Nội dung

9.2. Vi phˆan cu ’ a h`am nhiˆe ` ubiˆe ´ n 127 hay l`a f(x +∆x, y +∆y) ≈ f(x, y)+ ∂f ∂x (M)∆x + ∂f ∂y (M)∆y (9.8) Cˆong th´u . c (9.8) l`a co . so . ’ d ˆe ’ ´ap du . ng vi phˆan t´ınh gˆa ` nd´ung. Dˆo ´ i v´o . i h`am c´o sˆo ´ biˆe ´ n nhiˆe ` uho . n2tac˜ung c´o cˆong th´u . ctu . o . ng tu . . . 9.2.3 C´ac t´ınh chˆa ´ tcu ’ a vi phˆan Dˆo ´ iv´o . i c´ac h`am kha ’ vi f v`a g ta c´o: (i) d(f ± g)=df ±dg; (ii) d(fg)=fdg + gdf, d(αf)=αdf, α ∈ R; (iii) d  f g  = gdf − fdg g 2 , g =0; (iv) Vi phˆan cˆa ´ p1cu ’ a h`am hai biˆe ´ n f(x, y)bˆa ´ tbiˆe ´ nvˆe ` da . ng bˆa ´ t luˆa . n x v`a y l`a biˆe ´ ndˆo . clˆa . p hay l`a h`am cu ’ a c´ac biˆe ´ ndˆo . clˆa . p kh´ac. 9.2.4 Vi phˆan cˆa ´ p cao Gia ’ su . ’ h`am w = f(x, y) kha ’ vi trong miˆe ` n D. Khi d ´o vi phˆan cˆa ´ p1 cu ’ a n´o ta . idiˆe ’ m(x, y) ∈ D tu . o . ng ´u . ng v´o . i c´ac sˆo ´ gia dx v`a dy cu ’ a c´ac biˆe ´ ndˆo . clˆa . pdu . o . . cbiˆe ’ udiˆe ˜ nbo . ’ i cˆong th´u . c df = ∂f ∂x dx + ∂f ∂y dy. (9.9) O . ’ d ˆa y , dx =∆x, dy =∆y l`a nh ˜u . ng sˆo ´ gia t`uy ´y cu ’ abiˆe ´ ndˆo . clˆa . p, d´o l`a nh˜u . ng sˆo ´ khˆong phu . thuˆo . c v`ao x v`a y.Nhu . vˆa . y, khi cˆo ´ di . nh dx v`a dy vi phˆan df l`a h`am cu ’ a x v`a y. Theo di . nh ngh˜ıa: Vi phˆan th ´u . hai d 2 f (hay vi phˆan cˆa ´ p 2) cu ’ a h`am f(x, y)ta . idiˆe ’ m M(x, y)du . o . . cdi . nh ngh˜ıa nhu . l`a vi phˆan cu ’ avi phˆan th ´u . nhˆa ´ tta . idiˆe ’ m M v´o . i c´ac diˆe ` ukiˆe . n sau dˆay: (1) Vi phˆan df l`a h`am chı ’ cu ’ a c´ac biˆe ´ ndˆo . clˆa . p x v`a y. 128 Chu . o . ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe ` ubiˆe ´ n (2) Sˆo ´ gia cu ’ a c´ac biˆe ´ ndˆo . clˆa . p x v`a y xuˆa ´ thiˆe . n khi t´ınh vi phˆan cu ’ a f  x v`a f  y du . o . . c xem l`a b˘a ` ng sˆo ´ gia d ˆa ` u tiˆen, t ´u . cl`ab˘a ` ng dx v`a dy. T`u . d´o d 2 f(M)= ∂ 2 f(M) ∂x 2 dx 2 +2 ∂ 2 f ∂x∂y (M)dxdy + ∂ 2 f ∂y 2 (M)dy 2 (9.10) trong d´o dx 2 =(dx) 2 , dy 2 =(dy) 2 v`a ta xem c´ac da . o h`am riˆeng hˆo ˜ n ho . . pb˘a ` ng nhau. Mˆo . t c´ach h`ınh th´u . c d ˘a ’ ng th ´u . c (9.10) c´o thˆe ’ viˆe ´ tdu . ´o . ida . ng d 2 f =  ∂ ∂x dx + ∂ ∂y dy  2 f(x, y) t´u . c l`a sau khi thu . . chiˆe . n ph´ep “b`ınh phu . o . ng” ta cˆa ` ndiˆe ` n f(x, y) v`ao “ˆo trˆo ´ ng”. Tu . o . ng tu . . d 3 f =  ∂ ∂x dx + ∂ ∂y dy  3 f(x, y) = ∂ 3 f ∂x 3 dx 3 +3 ∂ 3 f ∂x 2 ∂y dx 2 dy +3 ∂ 3 f ∂x∂y 2 dxdy 2 + ∂ 3 f ∂y 3 dy 3 , v.v Mˆo . t c´ach quy na . p ta c´o d n f(x, y)= n  k=0 C k n ∂ n f ∂x n−k ∂y k dx n−k dy k . (9.11) Trong tru . `o . ng ho . . pnˆe ´ u w = f(t, v),t= ϕ(x, y),v= ψ(x, y) th`ı dw = ∂f ∂t dt + ∂f ∂v dx (t´ınh bˆa ´ tbiˆe ´ nvˆe ` da . ng !) d 2 w = ∂ 2 f ∂t 2 dt 2 +2 ∂ 2 f ∂t∂v dtdy + ∂ 2 f ∂v 2 dv 2 + ∂f ∂t d 2 t + ∂f ∂v d 2 v. (9.12) 9.2. Vi phˆan cu ’ a h`am nhiˆe ` ubiˆe ´ n 129 9.2.5 Cˆong th´u . c Taylor Nˆe ´ u h`am f(x, y)l`an +1 lˆa ` n kha ’ vi trong ε-lˆan cˆa . n V cu ’ adiˆe ’ m M 0 (x 0 ,y 0 )th`ıdˆo ´ iv´o . idiˆe ’ mbˆa ´ tk`yM(x, y) ∈Vta c´o cˆong th´u . c Taylor f(x, y)=f(x 0 ,y 0 )+ 1 1!  f  x (x 0 ,y 0 )(x − x 0 )+f  y (x 0 ,y 0 )(y −y 0 )  + 1 2!  f  xx (x 0 ,y 0 )(x − x 0 ) 2 +2f  xy (x 0 ,y 0 )(x −x 0 )(y − y 0 ) + f  yy (x 0 ,y 0 )(y −y 0 )  + ···+ 1 n! m  i=0 C i n ∂ n f(x 0 ,y 0 ) ∂x n−i ∂y i (x −x 0 ) n−i (y − y 0 ) i + 1 (n + 1)! n  i=0 ∂ n+1 f(ξ,η) ∂x n−i ∂y i (x − x 0 ) n−i (y −y 0 ), (9.13) trong d ´o ξ = x 0 + θ(x − x 0 ), η = y 0 + θ(y −y 0 ), 0 <θ<1. hay l`a f(x, y)=f(x 0 ,y 0 )+ 1 1! df (x 0 ,y 0 )+ 1 2! d 2 f(x 0 ,y 0 )+ + 1 n! d n f(x 0 ,y 0 )+R n+1 , = P n (x, y)+R n+1 (9.14) trong d´o P n (x, y)go . il`adath´u . c Taylor bˆa . c n cu ’ a hai biˆe ´ n x v`a y, R n+1 l`a sˆo ´ ha . ng du . .Nˆe ´ ud ˘a . t ρ =  ∆x 2 +∆y 2 th`ı (9.14) c´o thˆe ’ viˆe ´ tdu . ´o . ida . ng f(x, y)=P n (x, y)+0(ρ),ρ→ 0, o . ’ dˆay R n+1 = o(ρ) l`a phˆa ` ndu . da . ng Peano. 130 Chu . o . ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe ` ubiˆe ´ n 9.2.6 Vi phˆan cu ’ a h`am ˆa ’ n Theo di . nh ngh˜ıa: biˆe ´ n w du . o . . cgo . i l`a h`am ˆa ’ ncu ’ a c´ac biˆe ´ nd ˆo . clˆa . p x, y, , t nˆe ´ un´od u . o . . cchobo . ’ iphu . o . ng tr`ınh F (x,y, ,w)=0 khˆong gia ’ id u . o . . cd ˆo ´ iv´o . i w. D ˆe ’ t´ınh vi phˆan cu ’ a h`am ˆa ’ n w ta lˆa ´ y vi phˆan ca ’ hai vˆe ´ cu ’ aphu . o . ng tr`ınh (xem nhu . dˆo ` ng nhˆa ´ tth´u . c) rˆo ` it`u . d´ot`ımdw.Dˆe ’ t´ınh d 2 w ta cˆa ` n lˆa ´ y vi phˆan cu ’ a dw v´o . ilu . u´yr˘a ` ng dx v`a dy l`a h˘a ` ng sˆo ´ , c`on dw l`a vi phˆan cu ’ a h`am. Ta c˜ung c´o thˆe ’ thu d u . o . . c vi phˆan dw b˘a ` ng c´ach t´ınh c´ac da . o h`am riˆeng: w  x = − F  x (·) F  w (·) ,w  y = − F  y (·) F  w (·) , rˆo ` ithˆe ´ v`ao biˆe ’ uth´u . c dw = ∂w ∂x dx + ∂w ∂y dy + ···+ ∂w ∂t dt, v.v C ´ AC V ´ IDU . V´ı du . 1. T´ınh vi phˆan df nˆe ´ u 1) f(x, y)=xy 2 ,2)f(x, y)=  x 2 + y 2 . Gia ’ i. 1) Ta c´o f  x =  xy 2   x = y 2 ,f  y =  xy 2 )  y =2xy. Do d´o df (x, y)=y 2 dx +2xydy. 2) Ta t´ınh c´ac da . o h`am riˆeng: f  x = x  x 2 + y 2 ,f  y = y  x 2 + y 2 · 9.2. Vi phˆan cu ’ a h`am nhiˆe ` ubiˆe ´ n 131 Do d´o df = x  x 2 + y 2 dx + y  x 2 + y 2 dy = xdx + ydy  x 2 + y 2 ·  V´ı du . 2. T´ınh df (M 0 )nˆe ´ u f(x, y, z)=e x 2 +y 2 +z 2 v`a M 0 = M 0 (0, 1, 2). Gia ’ i. Ta c´o df (M)= ∂f ∂x (M)dx + ∂f ∂y (M)dy + ∂f ∂z (M)dz, M = M(x, y, z). Ta t´ınh c´ac da . o h`am riˆeng ∂f ∂x =2xe x 2 +y 2 +z 2 ⇒ ∂f ∂x (M 0 )=0, (v`ı x =0) ∂f ∂y =2ye x 2 +y 2 +z 2 ⇒ ∂f ∂y (M 0 )=2e 5 , ∂f ∂z =2ze x 2 +y 2 +z 2 ⇒ ∂f ∂z (M 0 )=4e 5 . T`u . d ´o df (M 0 )=2e 5 dy +4e 5 dz.  V´ı d u . 3. T´ınh dw ta . idiˆe ’ m M 0 (−1, 1) nˆe ´ u w = f(x + y 2 ,y+ x 2 ). Gia ’ i. C´ach 1. T´ınh c´ac da . o h`am riˆeng cu ’ a h`am f(x, y) theo x v`a theo y rˆo ` i´apdu . ng cˆong th´u . c (9.9). T`u . v´ıdu . 4, mu . c 9.1 ta c´o ∂f ∂x (M 0 )=f  t (0, 2) − 2f  v (0, 2) ∂f ∂y (M 0 )=2f  t (0, 2) + f  v (0, 2) t = x + y 2 ,v= y + x 2 v`a do d´o df (M 0 )=  f  t (0, 2) − 2f  v (0, 2)  dx +2  2f  t (0, 2) + f  v (0, 2)  dy. 132 Chu . o . ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe ` ubiˆe ´ n C´ach 2. ´ Ap du . ng t´ınh bˆa ´ tbiˆe ´ nvˆe ` da . ng cu ’ a vi phˆan cˆa ´ p1. Ta c´o t = x + y 2 ⇒ dt = dx +2ydy, v = y + x 2 ⇒ dv =2xdx + dy. Do d ´o df (M 0 )= ∂f ∂t (0, 2)dt + ∂f ∂v (0, 2)dv = f  t (0, 2)[dx +2ydy]+f  v (0, 2)[2xdx + dy] =  f  t (0, 2) − 2f  v (0, 2)  dx +  2f  t (0, 2) + f  v (0, 2)  dy.  V´ı d u . 4. 1) Cho h`am f(x, y)=x y . H˜ay t`ım vi phˆan cˆa ´ p hai cu ’ a f nˆe ´ u x v`a y l`a biˆe ´ ndˆo . clˆa . p. 2) T`ım vi phˆan cˆa ´ p hai cu ’ a h`am f(x + y, xy)nˆe ´ u x v`a y l`a biˆe ´ n d ˆo . clˆa . p. Gia ’ i. 1) T`u . v´ıdu . 2, 1) v`a cˆong th ´u . c (9.10) ta c´o d 2 f = ∂ 2 f ∂x 2 dx 2 +2 ∂ 2 f ∂x∂y dxdy + ∂ 2 f ∂y 2 dy 2 , trong d´o ∂ 2 f ∂x 2 = y(y − 1)x y−2 , ∂ 2 f ∂y 2 = x y (lnx) 2 , ∂ 2 f ∂x∂y = x y−1 (1 + ylnx) v`a do d ´o d 2 f = y(y − 1)x y−2 dx 2 + x y−1 (1 + ylnx)dxdy + x y (lnx) 2 dy 2 . 2) Ta viˆe ´ t h`am d˜a cho du . ´o . ida . ng u = f(t, v), trong d ´o t = x + y, v = xy. 9.2. Vi phˆan cu ’ a h`am nhiˆe ` ubiˆe ´ n 133 1 + C´ach I. T´ınh c´ac da . o h`am riˆeng rˆo ` i ´ap du . ng (9.10). Ta c´o: ∂f ∂x = f  t (x + y,xy)+f  v (x + y,xy) · y, ∂f ∂y = f  t (x + y,xy)+f  v (x + y,xy) · x, ∂ 2 f ∂x 2 = f  tt + f  tv y + f  tv y + f  vv y 2 = f  tt +2yf  tv + y 2 f  vv , ∂ 2 f ∂x∂y = f  tt + f  tv x + f  tv y + f  vv xy + f  v = f  tt +(x + y)f  tv + xyf  vv + f  v , ∂ 2 f ∂y 2 = f  tt + f  tv x + f  tv x + f  vv x 2 = f  tt +2xf  tv + x 2 f  vv . Thˆe ´ c´ac d a . o h`am riˆeng t`ım du . o . . c v`ao (9.10) ta thu du . o . . c d 2 f =(f  tt +2yf  tv + y 2 f  vv )dx 2 +2(f  tt +(x + y)f  tv + xyf  vv + f  v )dxdy +(f  tt +2xf  tv + x 2 f  vv )dy 2 . 2 + C´ach II. Ta c´o thˆe ’ thu du . o . . ckˆe ´ t qua ’ n`ay nˆe ´ ulu . u´yr˘a ` ng v´o . i t = x + y ⇒ dt = dx + dy v`a v = xy → dv = xdy + ydx v`a t`u . d ´o d 2 t = d(dx + dy)=d 2 x + d 2 y =0 (v`ı x v`a y l`a biˆe ´ nd ˆo . clˆa . p) v`a d 2 v = d(xdy + ydx)=dxdy + dxdy =2dxdy. ´ Ap du . ng (9.12) ta c´o d 2 f = ∂ 2 f ∂t 2 (dx + dy) 2 +2 ∂ 2 f ∂t∂v (dx + dy)(xdy + ydx) + ∂ 2 f ∂v 2 (xdy + ydx) 2 + ∂f ∂t · 0+ ∂f ∂v (2dxdy) =  f  tt +2yf  tv + y 2 f  vv  dx 2 +  f  tt +2xf  tv + x 2 f  vv  dy 2 +2  f  tt +(x + y)f  tv + xyf  vv + f  v  dxdy.  134 Chu . o . ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe ` ubiˆe ´ n V´ı du . 5. ´ Ap du . ng vi phˆan dˆe ’ t´ınh gˆa ` nd´ung c´ac gi´a tri . : 1) a =(1,04) 2,03 2) b = arctg  1, 97 1, 02 − 1  3) c =  (1, 04) 1,99 + ln(1, 02) 4) d = sin 1, 49 · arctg0, 07 2 2,95 . Gia ’ i. Dˆe ’ ´ap du . ng vi phˆan v`ao t´ınh gˆa ` nd´ung ta cˆa ` n thu . . chiˆe . n c´ac bu . ´o . c sau dˆay: Th´u . nhˆa ´ t l`a chı ’ r˜o biˆe ’ uth´u . c gia ’ it´ıchd ˆo ´ iv´o . i h`am m`a gi´a tri . gˆa ` n d ´ung cu ’ a n´o cˆa ` n pha ’ i t´ınh. Th´u . hai l`a cho . ndiˆe ’ mdˆa ` u M 0 sao cho gi´a tri . cu ’ a h`am v`a cu ’ a c´ac da . o h`am riˆeng cu ’ a n´o ta . idiˆe ’ mˆa ´ y c´o thˆe ’ t´ınh m`a khˆong cˆa ` nd`ung ba ’ ng. Cuˆo ´ ic`ung ta ´ap du . ng cˆong th´u . c f(x 0 +∆x, y 0 +∆y)=f(x 0 ,y 0 )+f  x (x 0 ,y 0 )∆x + f  y (x 0 ,y 0 )∆y. 1) T´ınh a =(1, 04) 2,03 . Ta x´et h`am f(x, y)=x y .Sˆo ´ a cˆa ` n t´ınh l`a gi´a tri . cu ’ a h`am khi x =1,04 v`a y =2, 03. Ta lˆa ´ y M 0 = M 0 (1, 2). Khi d´o∆x =0, 04, ∆y =0, 03. Tiˆe ´ p theo ta c´o ∂f ∂x = yx y−1 ⇒ ∂f ∂x   M 0 =2 ∂f ∂y = x y lnx ⇒ ∂f ∂y   M 0 =1·ln1 = 0. Bˆay gi`o . ´ap du . ng cˆong th´u . cv`u . anˆeuo . ’ trˆen ta c´o: a = f(1, 04; 2, 03) = (1, 04) 2,03 ≈ f(1, 2) + 2 · 0, 04 = 1 + 0, 08 = 1, 08. 2) Ta nhˆa . nx´etr˘a ` ng arctg  1, 97 1, 02 − 1  l`a gi´a tri . cu ’ a h`am f(x, y) = arctg  x y − 1  9.2. Vi phˆan cu ’ a h`am nhiˆe ` ubiˆe ´ n 135 ta . idiˆe ’ m M(1, 97; 1, 02). Ta cho . n M 0 = M 0 (2, 1) v`a c´o ∆x =1, 97 − 2=−0, 03, ∆y =1, 02 − 1=0, 02. Tiˆe ´ pd ˆe ´ n ta c´o ∂f ∂x = 1 y 1+  x y − 1  2 = y y 2 +(x − y) 2 ∂f ∂y = − x y 2 +(x −y) 2 · T`u . d´o ∂f ∂x (M 0 )=f  x (2, 1) = 1 1 2 +(2− 1) 2 =0, 5 ∂f ∂y (M 0 )=f  y (2, 1) = −1. Do d´o arctg  1, 97 1, 02 − 1  = arctg  2 1 −1  +(0, 5) · (−0, 03) + 1 · (0, 02) = π 4 −0, 015 − 0, 02=0, 785 −0, 035 =0, 75. 3) Ta thˆa ´ yr˘a ` ng c =  (1, 04) 1,99 + ln(1, 02) l`a gi´a tri . cu ’ a h`am u = f(x, y, z)= √ x y +lnz ta . idiˆe ’ m M(1, 04; 1, 99; 1, 02). Ta cho . n M 0 = M 0 (1, 2, 1). Khi d´o ∆x =1, 04 − 1=0, 04 ∆y =1, 99 − 2=−0, 01 ∆z =1, 02 − 1=0, 02. 136 Chu . o . ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe ` ubiˆe ´ n Bˆay gi`o . ta t´ınh gi´a tri . c´ac d a . o h`am riˆeng ta . idiˆe ’ m M 0 .Tac´o ∂f ∂x = yx y−1 2 √ x y +lnz ⇒ ∂f ∂x (M 0 )= 2 · 1 2 √ 1 + ln1 =1, ∂f ∂y = x y lnx 2 √ x y +lnz ⇒ ∂f ∂y (M 0 )=0, ∂f ∂z = 1 2z √ x y +lnz ⇒ ∂f ∂z (M 0 )= 1 2 · T`u . d´o suy ra  (1, 04) 1,99 + ln(1, 02) ≈ √ 1+ln1+1· (0, 04) + 0 · (−0, 01) +(1/2) · 0, 02=1,05. 4) Ta thˆa ´ y d l`a gi´a tri . cu ’ a h`am f(x, y, z)=2 x sin y arctgx ta . idiˆe ’ m M(−2, 95; 1, 49; 0, 07) Ta lˆa ´ y M 0 = M 0  − 3, π 2 , 0  . Khi d´o ∆x = −2, 95 − (−3)=0, 05 ∆y =1,49 − 1, 57 = −0, 08 ∆z =0, 07. Tiˆe ´ p theo ta c´o f(M 0 )=2 −3 sin(π/2) arctg0 = 0, f  x (M 0 )=2 x ln2 · sin y arctgz   M 0 =0, f  y (M 0 )=2 x cos y arctgz   M 0 =0, f  z (M 0 )= 2 x sin y 1+z 2   M 0 =2 −3 . T`u . d´o ta thu du . o . . c sin 1, 49 arctg0, 07 2 2,95 ≈ 2 −3 · 0, 07 ≈ 0, 01.  V´ı du . 6. Khai triˆe ’ n h`am f(x, y)=x y theo cˆong th´u . c Taylor ta . i lˆan cˆa . nd iˆe ’ m(1, 1) v´o . i n =3. [...]... w w 3w 3w2 (**) ’ ’ ´ ` Dˆ c´ biˆu th´.c d2 w qua x, y, w, dx v` dy ta cˆn thˆ dw t` (*) v`o e o e u a a e u a (**) ’ ’ e V´ du 9 C´c h`m ˆn u(x, y) v` v(x, y) du.o.c x´c dinh bo.i hˆ ı a a a a a xy + uv = 1, xv − yu = 3 ´ ` 9. 2 Vi phˆn cua h`m nhiˆu biˆn a ’ a e e 1 39 ´ T´ du(1, −1), d2 u(1, −1); dv(1, −1), d2 v(1, −1) nˆu u(1, −1) = 1, ınh e v(1, −1) = 2 ` ´ ’ a o Giai Lˆy vi phˆn hˆ d˜ cho... dx − 3 cos ydy) ´ ` Chu.o.ng 9 Ph´p t´ vi phˆn h`m nhiˆu biˆn e ınh a a e e 140 4 w = ln(x2 + y) (DS 2xdx dy + 2 ) 2+y x x +y y x−1 y x y dx + ln − dy) x x x y 2ydx 2dy 6 w = ln tg (DS − + ) 2y 2y x x2 sin x sin x x ’ ’ a a a T´ dw(M0 ) cua c´c h`m tai diˆm M0 d˜ cho (7-14) ınh e 5 w = y x x (DS y x x y 7 w = e− x , M0 (1, 0) (DS dw(1, 0) = −dy) √ 8 w = y 3 x, M0 (1, 1) 9 f (x, y) = 1 (DS dw(1, 1)... 0, 0) a (DS df df M M0 = (ft cos x − fv sin x)dx + ft cos ydy + fv sin zdz, = ft (0, 0)dx + fv (0, 0)dy, t = sin x + sin y, v = cos x − cos z) ’ ´ e T´ vi phˆn dw v` d2 w tai diˆm M(x, y) ( 19- 22) nˆu: ınh a a e 19 w = f (lnz), z = x2 + y 2 (DS d2 w = (x2 2 (2x2 ftt − x2 ft + y 2ft )dx2 + y 2 )2 + (4xyftt − 4xyft )dxdy + (x2 ft − yft + 2yft2 )dy 2 ) ` ´ 20 w = f (α, β, γ), α = ax, β = by, γ = cz; a,... ` Giai Ta xem phu.o.ng tr` d˜ cho nhu mˆt dˆng nhˆt v` lˆy vi o ´ ´ phˆn cua vˆ tr´i v` vˆ phai: a ’ e a a e ’ 3w2 dw + 6xydx + 3x2 dy + wdx + xdw + 2y · w2 dy + 2y 2 wdw − 2dx + dy = 0 ´ ` Chu.o.ng 9 Ph´p t´ vi phˆn h`m nhiˆu biˆn e ınh a a e e 138 v` t` d´ r´t ra dw Ta c´ a u o u o (6xy + w − 2)dx + (3x2 + 2yw2 + 1)dy + (3w2 + x + 2y 2w)dw = 0 v` do d´ a o dw = 2 − 6xy − w 3x2 + 2yw2 + 1 dx − dy... ra (15-18) ım a ’ a a 15 f (x, y) = f (x − y, x + y), M(x, y), M0 (1, −1) (DS df df M M0 = (ft + fv )dx + (fv − ft )dy, = ft (2, 0) + fv (2, 0) dx + fv (2, 0) − ft (2, 0) dy, t = x − y, v = x + y) ´ ` 9. 2 Vi phˆn cua h`m nhiˆu biˆn a ’ a e e 16 f (x, y) = f xy, (DS df df 141 x , M(x, y), M0 (0, 1) y 1 x = yft + fv dx + xft − 2 fv dy, y y M = ft (0, 0) + fv (0, 0) dx, t = xy, v = M0 x ) y 17 f (x, y,...´ ` 9. 2 Vi phˆn cua h`m nhiˆu biˆn a ’ a e e 137 ’ o a o u o Giai Trong tru.`.ng ho.p n`y cˆng th´.c Taylor c´ dang sau dˆy a df (1, 1) d2 f (1, 1) d2 f (1, 1) + + + R3 (*) f (x, y) = f (1, 1) + 1! 2! 3!... 2 + c2 fγ 2 dz 2 + 2(fαβ abdxdy + fβγ bcdydz + fαγ acdxdz)) 21 w = f (x + y, x − y) (DS x + y = u, x − y = v; d2 w = (fu2 + 2fuv + fv2 )dx2 + (fu2 − 2fv2 )dxdy + (fu2 − 2fuv + fv2 )dy 2 ) ´ ` Chu.o.ng 9 Ph´p t´ vi phˆn h`m nhiˆu biˆn e ınh a a e e 142 x2 x (DS dw = f + f dx − 2 f dy, y y x 22 w = xf y d2 w = 2 x 4x 2x2 f + 2 f )dx2 − f + 3 f y y y2 y dxdy − 2x2 x3 f − 4f y3 y dy 2 ) ’ ´ ’ a a a a . z)= √ x y +lnz ta . idiˆe ’ m M(1, 04; 1, 99 ; 1, 02). Ta cho . n M 0 = M 0 (1, 2, 1). Khi d´o ∆x =1, 04 − 1=0, 04 ∆y =1, 99 − 2=−0, 01 ∆z =1, 02 − 1=0, 02. 136 Chu . o . ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe ` ubiˆe ´ n Bˆay. tri . : 1) a =(1,04) 2,03 2) b = arctg  1, 97 1, 02 − 1  3) c =  (1, 04) 1 ,99 + ln(1, 02) 4) d = sin 1, 49 · arctg0, 07 2 2 ,95 . Gia ’ i. Dˆe ’ ´ap du . ng vi phˆan v`ao t´ınh gˆa ` nd´ung ta cˆa ` n. = ∂ 2 f ∂t 2 dt 2 +2 ∂ 2 f ∂t∂v dtdy + ∂ 2 f ∂v 2 dv 2 + ∂f ∂t d 2 t + ∂f ∂v d 2 v. (9. 12) 9. 2. Vi phˆan cu ’ a h`am nhiˆe ` ubiˆe ´ n 1 29 9.2.5 Cˆong th´u . c Taylor Nˆe ´ u h`am f(x, y)l`an +1 lˆa ` n kha ’ vi

Ngày đăng: 13/07/2014, 23:21

TỪ KHÓA LIÊN QUAN