1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập toán cao cấp tập 3 part 4 pot

33 260 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 244,75 KB

Nội dung

11.4. T´ıch phˆan suy rˆo . ng 99 v`a +∞  a (αf(x)+βg(x))dx = α +∞  a f(x)dx + β +∞  a g(x)dx. 2) Cˆong th´u . c Newton-Leibnitz.Nˆe ´ u trˆen khoa ’ ng [a, +∞) h`am f(x) liˆen tu . cv`aF (x), x ∈ [a, +∞) l`a nguyˆen h`am n`ao d ´ocu ’ a n´o th`ı +∞  a f(x)dx = F(x)   +∞ a = F (+∞) −F(a) trong d ´o F (+∞) = lim x→+∞ F (x). 3) Cˆong th´u . cd ˆo ’ ibiˆe ´ n. Gia ’ su . ’ f(x), x ∈ [a,+∞) l`a h`am liˆen tu . c, ϕ(t), t ∈ [α, β] l`a kha ’ vi liˆen tu . cv`aa = ϕ(α)  ϕ(t) < lim t→β−0 ϕ(t)= +∞. Khi d ´o: +∞  a f(x)dx = β  α f(ϕ(t))ϕ  (t)dt. (11.27) 4) Cˆong th´u . c t´ıch phˆan t`u . ng phˆa ` n. Nˆe ´ u u(x)v`av(x), x ∈ [a, +∞) l`a nh˜u . ng h`am kha ’ vi liˆen tu . c v`a lim x→+∞ (uv)tˆo ` nta . i th`ı: +∞  a udv = uv   +∞ a − +∞  a vdu (11.28) trong d ´o uv   +∞ a = lim x→+∞ (uv) −u(a)v(a). 3. C´ac d iˆe ` ukiˆe . nhˆo . itu . 1) Tiˆeu chuˆa ’ n Cauchy.T´ıch phˆan +∞  a f(x)dx hˆo . itu . khi v`a chı ’ khi ∀ε>0, ∃b = b(ε)  a sao cho ∀b 1 >bv`a ∀b 2 >bta c´o:    b 2  b 1 f(x)dx    <ε. 100 Chu . o . ng 11. T´ıch phˆan x´ac d i . nh Riemann 2) Dˆa ´ uhiˆe . u so s´anh I. Gia ’ su . ’ g(x)  f(x)  0 ∀x  a v`a f(x), g(x) kha ’ t´ıch trˆen mo . id oa . n[a, b], b<+∞. Khi d´o : (i) Nˆe ´ u t´ıch phˆan +∞  a g(x)dx hˆo . itu . th`ı t´ıch phˆan +∞  a f(x)dx hˆo . itu . . (ii) Nˆe ´ u t´ıch phˆan +∞  a f(x)dx phˆan k`y th`ı t´ıch phˆan +∞  a g(x)dx phˆan k`y. 3) Dˆa ´ uhiˆe . u so s´anh II. Gia ’ su . ’ f(x)  0, g(x) > 0 ∀x  a v`a lim x→+∞ f(x) g(x) = λ. Khi d ´o: (i) Nˆe ´ u0<λ<+∞ th`ı c´ac t´ıch phˆan +∞  a f(x)dx v`a +∞  a g(x)dx d ˆo ` ng th`o . ihˆo . itu . ho˘a . cd ˆo ` ng th`o . i phˆan k`y. (ii) Nˆe ´ u λ = 0 v`a t´ıch phˆan +∞  a g(x)dx hˆo . itu . th`ı t´ıch phˆan +∞  a f(x)dx hˆo . itu . . (iii) Nˆe ´ u λ =+∞ v`a t´ıch phˆan +∞  a f(x)dx hˆo . itu . th`ı t´ıch phˆan +∞  a g(x)dx hˆo . itu . . D ˆe ’ so s´anh ta thu . `o . ng su . ’ du . ng t´ıch phˆan +∞  a dx x α   hˆo . itu . nˆe ´ u α>1, phˆan k`y nˆe ´ u α  1. (11.29) 11.4. T´ıch phˆan suy rˆo . ng 101 D - i . nh ngh˜ıa. T´ıch phˆan +∞  a f(x)dx du . o . . cgo . i l`a hˆo . itu . tuyˆe . td ˆo ´ inˆe ´ u t´ıch phˆan +∞  a |f(x)|dx hˆo . itu . v`a du . o . . cgo . i l`a hˆo . itu . c´o d iˆe ` ukiˆe . nnˆe ´ u t´ıch phˆan +∞  a f(x)dx hˆo . itu . nhu . ng t´ıch phˆan +∞  a |f(x)|dx phˆan k`y. Mo . i t´ıch phˆan hˆo . itu . tuyˆe . td ˆo ´ idˆe ` uhˆo . itu . . 3) T`u . dˆa ´ uhiˆe . u so s´anh II v`a (11.29) r´ut ra Dˆa ´ uhiˆe . u thu . . c h`anh. Nˆe ´ u khi x → +∞ h`am du . o . ng f(x) l`a vˆo c`ung b´e cˆa ´ p α>0 so v´o . i 1 x th`ı (i) t´ıch phˆan +∞  a f(x)dx hˆo . itu . khi α>1; (ii) t´ıch phˆan +∞  a f(x)dx phˆan k`y khi α  1. C ´ AC V ´ IDU . V´ı d u . 1. T´ınh t´ıch phˆan I = +∞  2 dx x 2 √ x 2 − 1 · Gia ’ i. Theo d i . nh ngh˜ıa ta c´o +∞  2 dx x 2 √ x 2 − 1 = lim b→+∞ b  2 dx x 2 √ x 2 − 1 · D ˘a . t x = 1 t , ta thu d u . o . . c 102 Chu . o . ng 11. T´ıch phˆan x´ac d i . nh Riemann I(b)= b  2 dx x 2 √ x 2 − 1 = 1/b  1/2 −dt t 2 · 1 t 2  1 t 2 − 1 = − 1/b  1/2 tdt √ 1 − t 2 = √ 1 − t 2    1/b 1/2 =  1 − 1 b 2 −  1 − 1 4 . T`u . d ´o suy r˘a ` ng I = lim b→+∞ I(b)= 2 − √ 3 2 .Nhu . vˆa . y t´ıch phˆan d ˜acho hˆo . itu . .  V´ı du . 2. Kha ’ o s´at su . . hˆo . itu . cu ’ a t´ıch phˆan +∞  1 2x 2 +1 x 3 +3x +4 dx. Gia ’ i. H`am du . ´o . idˆa ´ u t´ıch phˆan > 0 ∀x  1. Ta c´o f(x)= 2x 2 +1 x 3 +3x +4 = 2+ 1 x 2 x + 3 x + 4 x 2 · V´o . i x d u ’ l´o . n h`am f(x) c´o d´ang d iˆe . unhu . 2 x .Dod ´otalˆa ´ y h`am ϕ(x)= 1 x d ˆe ’ so s´anh v`a c´o lim x→+∞ f(x) ϕ(x) = lim x→+∞ (2x 2 +1)x x 2 +3x +4 =2=0. V`ı t´ıch phˆan ∞  1 dx x phˆan k`y nˆen theo dˆa ´ uhiˆe . u so s´anh II t´ıch phˆan d ˜a cho phˆan k`y.  V´ı du . 3. Kha ’ o s´at su . . hˆo . itu . cu ’ a t´ıch phˆan ∞  2 dx 3 √ x 3 − 12 · 11.4. T´ıch phˆan suy rˆo . ng 103 Gia ’ i. Ta c´o bˆa ´ td˘a ’ ng th ´u . c 1 3 √ x 3 − 1 > 1 x khi x>2. Nhu . ng t´ıch phˆan ∞  2 dx x phˆan k `y, do d ´o theo dˆa ´ uhiˆe . u so s´anh I t´ıch phˆan d ˜a cho phˆan k`y.  V´ı d u . 4. Kha ’ o s´at su . . hˆo . itu . v`a d ˘a . c t´ınh hˆo . itu . cu ’ a t´ıch phˆan +∞  1 sin x x dx. Gia ’ i. D ˆa ` u tiˆen ta t´ıch phˆan t`u . ng phˆa ` nmˆo . t c´ach h`ınh th´u . c +∞  1 sin x x dx = − cos x x    +∞ 1 − +∞  1 cos x x 2 dx = cos 1 − +∞  1 cos x x 2 dx. (11.30) T´ıch phˆan +∞  1 cos x x 2 dx hˆo . itu . tuyˆe . tdˆo ´ i, do d´on´ohˆo . itu . .Nhu . vˆa . y ca ’ hai sˆo ´ ha . ng o . ’ vˆe ´ pha ’ i (11.30) h˜u . uha . n. T`u . d ´o suy ra ph´ep t´ıch phˆan t `u . ng phˆa ` nd ˜a thu . . chiˆe . nl`aho . . pl´yv`avˆe ´ tr´ai cu ’ a (11.30) l`a t´ıch phˆan hˆo . itu . . Ta x´et su . . hˆo . itu . tuyˆe . td ˆo ´ i. Ta c´o |sin x|  sin 2 x = 1 − cos 2x 2 v`a do vˆa . y ∀b>1 ta c´o b  1 |sin x| x dx  1 2 b  1 dx x − 1 2 b  1 cos 2x x dx. (11.31) 104 Chu . o . ng 11. T´ıch phˆan x´ac d i . nh Riemann T´ıch phˆan th´u . nhˆa ´ to . ’ vˆe ´ pha ’ icu ’ a (11.31) phˆan k`y. T´ıch phˆan th ´u . hai o . ’ vˆe ´ pha ’ id ´ohˆo . itu . (diˆe ` ud´odu . o . . c suy ra b˘a ` ng c´ach t´ıch phˆan t`u . ng phˆa ` nnhu . (11.30)). Qua gi´o . iha . n (11.31) khi b → +∞ ta c´o vˆe ´ pha ’ i cu ’ a (11.31) dˆa ` nd ˆe ´ n ∞ v`a do d´o t´ıch phˆan vˆe ´ tr´ai cu ’ a (11.31) phˆan k`y, t ´u . c l`a t´ıch phˆan d ˜a cho hˆo . itu . c´o diˆe ` ukiˆe . n (khˆong tuyˆe . tdˆo ´ i).  B ` AI T ˆ A . P T´ınh c´ac t´ıch phˆan suy rˆo . ng cˆa . n vˆo ha . n 1. ∞  0 xe −x 2 dx (DS. 1 2 ) 2. ∞  0 dx x √ x 2 − 1 .(D S. π 6 ) 3. ∞  0 dx (x 2 +1) 2 .(DS. π − 2 8 ) 4. ∞  0 x sin xdx.(DS. Phˆan k`y) 5. ∞  −∞ 2xdx x 2 +1 .(D S. Phˆan k`y) 6. ∞  0 e −x sin xdx.(DS. 1 2 ) 7. +∞  2  1 x 2 −1 + 2 (x +1) 2  dx.(D S. 2 3 + 1 2 ln 3) 8. +∞  −∞ dx x 2 +4x +9 .(D S. π √ 5 5 ) 11.4. T´ıch phˆan suy rˆo . ng 105 9. +∞  √ 2 xdx (x 2 +1) 3 .(DS. 1 36 ). Chı ’ dˆa ˜ n. D ˘a . t x = √ t. 10. +∞  1 dx x √ x 2 + x +1 .(D S. ln  1+ 2 √ 3  ). Chı ’ dˆa ˜ n. D ˘a . t x = 1 t . 11. +∞  1 arctgx x 2 dx.(DS. π 4 + ln 2 2 ) 12. +∞  3 2x +5 x 2 +3x − 10 dx.(D S. Phˆan k`y) 13. ∞  0 e −ax sin bxdx, a>0. (DS. b a 2 + b 2 ) 14. +∞  0 e −ax cos bxdx, a>0. (DS. a a 2 + b 2 ) Kha ’ o s´at su . . hˆo . itu . cu ’ a c´ac t´ıch phˆan suy rˆo . ng cˆa . n vˆo ha . n 15. ∞  1 e −x x dx.(D S. Hˆo . itu . ) Chı ’ dˆa ˜ n. ´ Ap du . ng bˆa ´ td ˘a ’ ng th´u . c e −x x  e −x ∀x  1. 16. +∞  2 xdx √ x 4 +1 .(D S. Phˆan k`y) Chı ’ dˆa ˜ n. ´ Ap du . ng bˆa ´ td ˘a ’ ng th´u . c x √ x 4 +1 > x √ x 4 + x 4 ∀x  2. 17. +∞  1 sin 2 3x 3 √ x 4 +1 dx.(D S. Hˆo . itu . ) 106 Chu . o . ng 11. T´ıch phˆan x´ac d i . nh Riemann 18. +∞  1 dx √ 4x +lnx .(D S. Phˆan k `y) 19. +∞  1 ln  1+ 1 x  x α dx.(DS. Hˆo . itu . nˆe ´ u α>0) 20. +∞  0 xdx 3 √ x 5 +2 .(D S. Hˆo . itu . ) 21. +∞  1 cos 5x − cos 7x x 2 dx.(DS. Hˆo . itu . ) 22. +∞  0 xdx 3 √ 1+x 7 .(DS. Hˆo . itu . ) 23. +∞  0 √ x +1 1+2 √ x + x 2 dx.(DS. Hˆo . itu . ) 24. ∞  1 1 √ x (e 1/x −1)dx.(DS. Hˆo . itu . ) 25. ∞  1 x + √ x +1 x 2 +2 5 √ x 4 +1 dx.(D S. Phˆan k`y) 26. ∞  3 dx  x(x − 1)(x −2) .(D S. Hˆo . itu . ) 27 ∗ . ∞  0 (3x 4 − x 2 )e −x 2 dx.(DS. Hˆo . itu . ) Chı ’ dˆa ˜ n. So s´anh v´o . i t´ıch phˆan hˆo . itu . +∞  0 e − x 2 2 dx (ta . i sao ?) v`a ´ap du . ng dˆa ´ uhiˆe . u so s´anh II. 11.4. T´ıch phˆan suy rˆo . ng 107 28 ∗ . +∞  5 ln(x −2) x 5 + x 2 +1 dx.(D S. Hˆo . itu . ) Chı ’ dˆa ˜ n. ´ Ap du . nng hˆe . th ´u . c lim t→+∞ ln t t α =0∀α>0 ⇒ lim x→+∞ ln(x −2) x α =0∀α>0. T`u . d ´o so s´anh t´ıch phˆan d˜a c h o v ´o . i t´ıch phˆan hˆo . itu . +∞  5 dx x α , α>1. Tiˆe ´ pd ˆe ´ n´apdu . ng dˆa ´ uhiˆe . u so s´anh II. 11.4.2 T´ıch phˆan suy rˆo . ng cu ’ a h`am khˆong bi . ch˘a . n 1. Gia ’ su . ’ h`am f(x) x´ac d i . nh trˆen khoa ’ ng [a, b) v`a kha ’ t´ıch trˆen mo . i d oa . n[a, ξ], ξ<b.Nˆe ´ utˆo ` nta . i gi´o . iha . nh˜u . uha . n lim ξ→b−0 ξ  0 f(x)dx (11.32) th`ı gi´o . iha . nd ´odu . o . . cgo . i l`a t´ıch phˆan suy rˆo . ng cu ’ a h`am f(x) trˆen [a, b) v`a k´yhiˆe . u l`a: b  a f(x)dx. (11.33) Trong tru . `o . ng ho . . p n`ay t´ıch phˆan suy rˆo . ng (11.33) d u . o . . cgo . il`at´ıch phˆan hˆo . itu . .Nˆe ´ u gi´o . iha . n (11.32) khˆong tˆo ` nta . ith`ıt´ıch phˆan suy rˆo . ng (11.33) phˆan k `y. D i . nh ngh˜ıa t´ıch phˆan suy rˆo . ng cu ’ a h`am f(x)x´acdi . nh trˆen khoa ’ ng (a, b]d u . o . . c ph´at biˆe ’ utu . o . ng tu . . . Nˆe ´ u h`am f(x) kha ’ t´ıch theo ngh˜ıa suy rˆo . ng trˆen c´ac khoa ’ ng [a, c) v`a (c, b] th`ı h`am d u . o . . cgo . i l`a h`am kha ’ t´ıch theo ngh˜ıa suy rˆo . ng trˆen 108 Chu . o . ng 11. T´ıch phˆan x´ac d i . nh Riemann doa . n[a, b] v`a trong tru . `o . ng ho . . p n`ay t´ıch phˆan suy rˆo . ng d u . o . . c x´ac d i . nh bo . ’ id ˘a ’ ng th ´u . c: b  a f(x)dx = c  a f(x)dx + b  c f(x)dx. 2. C´ac cˆong th´u . cco . ba ’ n 1) Nˆe ´ u c´ac t´ıch phˆan b  a f(x)dx v`a b  a g(x)dx hˆo . itu . th`ı ∀α, β ∈ R ta c´o t´ıch phˆan b  a [αf(x)+βg(x)]dx hˆo . itu . v`a b  a [αf(x)+βg(x)]dx = α b  a f(x)dx + β b  a g(x)dx. 2) Cˆong th´u . c Newton-Leibnitz. Nˆe ´ u h`am f(x), x ∈ [a, b)liˆen tu . c v`a F (x) l`a mˆo . t nguyˆen h`am n`ao d ´ocu ’ a f trˆen [a, b) th`ı: b  a f(x)dx = F (x)   b−0 a = F(b − 0) − F (a), F (b −0) = lim x→b−0 F (x). 3) Cˆong th´u . cd ˆo ’ ibiˆe ´ n. Gia ’ su . ’ f(x) liˆen tu . c trˆen [a, b) c`on ϕ(t), t ∈ [α, β) kha ’ vi liˆen tu . cv`aa = ϕ(α)  ϕ(t) < lim t→β−0 ϕ(t)=b. Khi d ´o : b  a f(x)dx = β  α f[ϕ(t)]ϕ  (t)dt. [...]... y = − x + , y = − x + 5 biˆn th`nh c´c du.`.ng th˘ng v = , v = 5 3 3 3 3 ∗ th`nh miˆn D∗ = [ 3, 1] × 7 , 5 Dˆ d`ng thˆy ˜ a ` ´ ’ e a Do d´ miˆn D tro a e o ` e 3 D(x, y) 3 ` r˘ng a = − Do d´ theo cˆng th´.c (12.5): o o u D(u, v) 4 3 1 u+ v − 4 4 (y − x)dxdy = 3 3 − u+ v 4 4 3 dudv 4 D∗ D 5 3 ududv = 4 = D∗ 4 3 udu = −8 4 dv 7 /3 3 ’ ´ ` Nhˆn x´t Ph´p dˆi biˆn trong t´ phˆn hai l´.p nh˘m muc d´ch... 12.1 .3 Mˆt v`i u.ng dung trong h` hoc 121 o a ´ 12.2 T´ phˆn 3- l´.p 133 ıch a o ` ınh o o e 12.2.1 Tru.`.ng ho.p miˆn h` hˆp 133 ` o e 12.2.2 Tru.`.ng ho.p miˆn cong 1 34 12.2 .3 136 12.2 .4 Nhˆn x´t chung 136 a e o 12 .3 T´ phˆn d u.`.ng 144 ıch a ’ ıa 12 .3. 1 C´c dinh ngh˜ co ban 144 a ... biˆn 130 xdxdy; y = x3, x + y = 2, x = 0 30 7 ) 15 (DS D 31 5 (DS 20 ) 6 xdxdy; xy = 6, x + y − 7 = 0 D 3 (DS 1 ) 5 y 2xdxdy; x2 + y 2 = 4, x + y − 2 = 0 32 D 33 (x + y)dxdy; 0 y π, 0 x sin y (DS 5π ) 4 D 34 sin(x + y)dxdy; x = y, x + y = π , y = 0 2 (DS 1 ) 2 D 2 e−y dxdy; D l` tam gi´c v´.i dınh O(0, 0), B(0, 1), A(1, 1) a a o ’ 35 D (DS − 1 1 + ) 2e 2 xydxdy; D l` h`nh elip 4x2 + y 2 a ı 36 4 (DS... 0, y = 37 √ 2ax − x2 (DS 4a5 ) 5 D xdxdy ; y = x, x = 2, x = 2y x2 + y 2 38 (DS 1 π − 2arctg ) 2 2 D √ x + ydxdy; x = 0, y = 0, x + y = 1 39 (DS 2 ) 5 (DS 4 4 ) 15 D (x − y)dxdy; y = 2 − x2, y = 2x − 1 40 D 41 (x + 2y)dxdy; y = x, y = 2x, x = 2, x = 3 D 1 (DS 25 ) 3 12.1 T´ phˆn 2-l´.p ıch a o 42 131 xdxdy; x = 2 + sin y, x = 0, y = 0, y = 2π (DS 9π ) 2 D xydxdy; (x − 2)2 + y 2 = 1 43 (DS 4 ) 3 D dxdy... xdx (DS −0, 25) 0 3 √ 4 6 xdx x2 − 4 (DS 2√ 4 125) 3 2 2 dx (x − 1)2 7 (DS Phˆn k`) a y 0 2 xdx x2 − 1 8 (DS Phˆn k`) a y −2 2 9 x3 dx √ 4 − x2 (DS 16 ’ ˜ ) Chı dˆ n D˘t x = 2 sin t a a 3 0 0 10 −1 e1/x dx x3 2 (DS − ) e 11 .4 T´ phˆn suy rˆng ıch a o 1 11 e1/x dx x3 115 (DS Phˆn k`) a y 0 1 dx 12 x(1 − x) 0 (DS π) b dx ; a < b (x − a)(b − x) 13 a (DS π) 1 x ln2 xdx 14 (DS 1 ) 4 0 ’ a o ’ a ıch... 128 4 9 4 4 dy 0 f(−)dx (DS dx y 0 f(−)dy (DS f (−)dx) √ − 2−x2 0 1 y f(−)dy (DS dy x 0 y 2 1 dy 1 dy 0 dx 12 y−1 1 x+1 1 11 2 1−x2 dx −1 f (−)dy) 2 √ 10 x fdx (DS 1/y 1−y 2 √ 2 f dx + 0 dx 1/2 f dy + 13 2x dx 0 (x − y + 1)dy 14 y y3 dx x2 + y 2 (DS 6π) (x + 2y)dx (DS −11, 2) dy −2 0 y2 0 15 dy 2 0 5 16 5−x dx 0 4 + x + ydy (DS 506 ) 15 0 4 17 2 dy (x + y)2 dx 3 (DS 25 ) 24 1 √ 2 ax a dx 0 1 ) 3 x 4. .. x2) √ √ ∼ = √ = ϕ(x) 3 x sin x (x→0+0) x x 1 dx ´ √ hˆi tu nˆn theo dˆu hiˆu so s´nh II, t´ch phˆn o e a e a ı a 3 x V` t´ phˆn ı ıch a 0 d˜ cho hˆi tu a o ıch a a Chu.o.ng 11 T´ phˆn x´c dinh Riemann 1 14 ` ˆ BAI TAP T´ c´c t´ phˆn suy rˆng sau ınh a ıch a o 6 1 √ (DS 6 3 2) dx (4 − x)2 3 2 2 dx 2 (x − 1)2 3 0 (DS 6) e dx x ln x 3 (DS Phˆn k`) a y 1 2 4 x2 dx − 4x + 3 (DS Phˆn k`) a y 0... α > 0 ⇒ c´ thˆ lˆy a x→0+0 1 |lnx| 1 ’ α = ch˘ng han ⇒ √ < 3/ 4 a 4 x x 1 sin x dx x2 24 (DS Phˆn k`) a y 0 2 √ 25 dx x − x3 (DS Hˆi tu) o 0 2 26 x2 (x − 2) dx − 3x2 + 4 (DS Phˆn k`) a y 1 1 dx 27 x(ex − e−x ) 0 2 16 + x4 dx 16 − x4 28 o (DS Hˆi tu) (DS Hˆi tu) o 0 1√ ex − 1 dx sin x 29 (DS Hˆi tu) o 0 1 3 ln(1 + x) dx 1 − cos x 30 0 (DS Phˆn k`) a y Chu.o.ng 12 ´ ` T´ phˆn h`m nhiˆu biˆn... x 1 + x2dx = 13 3 2 dy = 0 x/2 ` ˆ BAI TAP ’ ıch a T` cˆn cua t´ phˆn hai l´.p ım a o ` f (x, y)dxdy theo miˆn D gi´.i e o D ’ a ’ a han bo.i c´c du.`.ng d˜ chı ra (Dˆ ng˘n gon ta k´ hiˆu f (x, y) = f (−)) o a ’ e ´ y e 1 x = 3, x = 5, 3x − 2y + 4 = 0, 3x − 2y + 1 = 0 3x +4 5 5 (DS dx 3 f (−)dy) 3x+1 5 2 x = 0, y = 0, x + y = 2 2 (DS 2−x dx 0 f (−)dy) 0 12.1 T´ phˆn 2-l´.p ıch a o 3 x2 + y 2 1,... a e u o a o 3 44 45 ydxdy; x = R(t − sin t), y = R(1 − cos t), 0 t 2π (l` miˆn a ` e D 5 ’ o ’ gi´.i han bo.i v`m cua xicloid.) (DS πR3 ) o 2 y=f (x) 2πR ˜ ’ a Chı dˆ n ydxdy = dx 0 D ydy 0 ’ ı a Chuyˆn sang toa dˆ cu.c v` t´nh t´ch phˆn trong toa dˆ m´.i e o o o a ı πR4 46 ) (x2 + y 2 )dxdy; D : x2 + y 2 R2 , y 0 (DS 4 D π (e − 1)) 4 ex 2 +y 2 dxdy; D : x2 + y 2 1, x 0, y ex 47 2 +y 2 dxdy; . 1 34 12.2 .3 136 12.2 .4 Nhˆa . nx´etchung 136 12 .3 T´ıch phˆan d u . `o . ng 144 12 .3. 1 C´ac d i . nh ngh˜ıa co . ba ’ n 144 12 .3. 2 T´ınh t´ıch phˆan d u . `o . ng 146 12 .4 T´ıch phˆan m˘a . t 158 12 .4. 1. sau. 1. 6  2 dx 3  (4 − x) 2 .(DS. 6 3 √ 2) 2. 2  0 dx 3  (x −1) 2 .(DS. 6) 3. e  1 dx x ln x .(D S. Phˆan k`y) 4. 2  0 dx x 2 − 4x +3 .(D S. Phˆan k`y) 5. 1  0 x ln xdx.(DS. −0, 25) 6. 3  2 xdx 4 √ x 2 −. 118 12.1 .3 Mˆo . tv`ai´u . ng du . ng trong h`ınh ho . c 121 12.2 T´ıch phˆan 3- l´o . p 133 12.2.1 Tru . `o . ng ho . . pmiˆe ` n h`ınh hˆo . p 133 12.2.2 Tru . `o . ng ho . . pmiˆe ` ncong 1 34 12.2.3

Ngày đăng: 29/07/2014, 02:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w