1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập toán cao cấp Tập 1 part 3 ppt

28 343 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 28
Dung lượng 371,69 KB

Nội dung

2.2. Phˆan th´u . ch˜u . uty ’ 55 (DS.  x 2 − √ 5 − 1 2 x +1  x 2 + √ 5+1 2 x +1  ) Chı ’ dˆa ˜ n. D˘a . t x 2 l`am th`u . asˆo ´ chung rˆo ` id`ung ph´ep d ˆo ’ ibiˆe ´ n y = x + 1 x 7) x 2n − 1(DS. (x 2 − 1) n−1  k=1 (x 2 − 2x cos kπ n + 1)) 8) x 2n+1 − 1(DS. (x − 1) n  k=1  x 2 −2x cos 2kπ 2n +1 +1  ) 2.2 Phˆan th´u . ch˜u . uty ’ Mˆo . t h`am sˆo ´ x´ac di . nh du . ´o . ida . ng thu . o . ng cu ’ a hai d ath´u . cd a . isˆo ´ ta . i nh˜u . ng diˆe ’ mm`amˆa ˜ usˆo ´ khˆong triˆe . t tiˆeu go . i l`a phˆan th´u . ch˜u . uty ’ . R(x)= P (x) Q(x) ,Q(x) =0. Nˆe ´ u degP<degQ th`ı R(x)go . il`aphˆan th´u . ch˜u . uty ’ thu . . csu . . .Nˆe ´ u degP  degQ th`ı R(x)d u . o . . cgo . il`aphˆan th´u . ch˜u . uty ’ khˆong thu . . csu . . . Nˆe ´ u degP  degQ th`ı b˘a ` ng c´ach thu . . chiˆe . nph´ep chia P(x)cho Q(x) ta thu du . o . . c P (x) Q(x) = W (x)+ P 1 (x) Q(x) (2.12) trong d ´o W (x)l`adath´u . c, c`on P 1 (x) Q(x) l`a phˆan th´u . ch˜u . uty ’ thu . . csu . . . Vˆe ` sau ta chı ’ x´et c´ac phˆan th´u . ch˜u . uty ’ l`a thu . o . ng cu ’ ahaidath´u . c da . isˆo ´ v´o . ihˆe . sˆo ´ thu . . c (phˆan th´u . cnhu . vˆa . ydu . o . . cgo . i l`a phˆan th´u . ch˜u . u ty ’ v´o . ihˆe . sˆo ´ thu . . c). Phˆan th´u . c thu . . cd o . n gia ’ n nhˆa ´ t (c`on go . i l`a phˆan th´u . cco . ba ’ n) l`a nh˜u . ng phˆan th´u . cdu . o . . cbiˆe ’ udiˆe ˜ ntˆo ´ i gia ’ nbo . ’ imˆo . t trong hai da . ng sau dˆa y I. A (x −α) m ; II. Bx + C (x 2 + px + q) m ; A, B, C, p, q ∈ R. 56 Chu . o . ng 2. D - ath´u . c v`a h`am h˜u . uty ’ T`u . d i . nh l´y Gauss v`a c´ac hˆe . qua ’ cu ’ a n´o ta c´o D - i . nh l´y. Mo . i phˆan th´u . ch˜u . uty ’ thu . . csu . . P (x) Q(x) hˆe . sˆo ´ thu . . cv´o . imˆa ˜ u sˆo ´ c´o da . ng Q(x)=(x −α) r (x −β) s ···(x 2 + p 1 x + q 1 ) m × × (x 2 + p 2 x + q 2 )  ···(x 2 + p s x + q s ) n (2.13) d ˆe ` u c´o thˆe ’ biˆe ’ udiˆe ˜ ndu . ´o . ida . ng tˆo ’ ng h˜u . uha . n c´ac phˆan th´u . cco . ba ’ n da . ng I v`a II P (x) Q(x) = A (x − α) r + B (x − α) r−1 + ···+ C x − α + + D (x − β) s + E (x −β) s−1 + ···+ F x − β + + Gx + H (x 2 + p 1 x + q 1 ) m + Ix + H (x 2 + p 1 x + q 1 ) m−1 + ···+ Lx + M x 2 + p 1 x + q 1 + + Nx+ P (x 2 + p s x + q s ) n + Qx + R (x 2 + p s x + q s ) n−1 + ···+ Sx + T x 2 + p s x + q s , (2.14) trong d ´o A,B, l`a nh˜u . ng h˘a ` ng sˆo ´ thu . . c. Nhu . vˆa . y c´ac phˆan th´u . cco . ba ’ no . ’ vˆe ´ pha ’ icu ’ a (2.14) s˘a ´ pxˆe ´ p theo t`u . ng nh´om tu . o . ng ´u . ng v´o . i c´ac th`u . asˆo ´ o . ’ vˆe ´ pha ’ icu ’ a (2.13), trong d´o sˆo ´ sˆo ´ ha . ng cu ’ amˆo ˜ i nh´om b˘a ` ng sˆo ´ m˜ucu ’ alu˜yth`u . acu ’ ath`u . asˆo ´ tu . o . ng ´u . ng. Cˆa ` nlu . u´yr˘a ` ng khi khai triˆe ’ n phˆan th´u . ccu . thˆe ’ theo cˆong th´u . c (2.14) mˆo . tsˆo ´ hˆe . sˆo ´ c´o thˆe ’ b˘a ` ng 0 v`a do d´osˆo ´ sˆo ´ ha . ng trong mˆo ˜ i nh´om c´o thˆe ’ b´e ho . nsˆo ´ m˜ucu ’ ath`u . asˆo ´ tu . o . ng ´u . ng. Trong thu . . c h`anh, d ˆe ’ t´ınh c´ac hˆe . sˆo ´ A,B, ta s˜e su . ’ du . ng c´ac phu . o . ng ph´ap sau. 2.2. Phˆan th´u . ch˜u . uty ’ 57 I. Gia ’ su . ’ d ath´u . c Q(x)chı ’ c´o c´ac nghiˆe . m thu . . cd o . n, t´u . cl`a Q(x)= n  j=1 (x − a j ),a i = a j ∀i = j. Khi d´o P (x) Q(x) = n  j=1 A j x −a j · (2.15) D ˆe ’ x´ac di . nh A k ta nhˆan hai vˆe ´ cu ’ a (2.15) v´o . i x − a k v`a thu du . o . . c P (x) n  j=1 j=k (x − a j ) = A k +  A 1 x −a 1 + ···+ A k−1 x −a k−1 + A k+1 x − a k+1 + ···+ A n x − a n  (x −a k ). (2.16) Thay x = a k v`ao (2.16) ta c´o A k = P (a k ) n  j=1 j=k (a k − a j ) · (2.17) Nhu . vˆa . yd ˆe ’ t´ınh hˆe . sˆo ´ A k cu ’ a phˆan th´u . c A k x −a k ta x´oa th`u . asˆo ´ (x − a k ) kho ’ imˆa ˜ usˆo ´ cu ’ a P (x) Q(x) v`a tiˆe ´ p theo l`a thay x = a k v`ao biˆe ’ u th ´u . c c`on la . i. V`ıvˆa . yphu . o . ng ph´ap n`ay d u . o . . cgo . il`aphu . o . ng ph´ap x´oa. II. Nˆe ´ u Q(x) c´o nghiˆe . mbˆo . i th`ı cˆong th´u . c (2.17) khˆong c`on su . ’ du . ng du . o . . c. Gia ’ su . ’ Q(x)=g m , trong d´o h o ˘a . c g = x − α ho˘a . c g l`a t´ıch c´ac th `u . asˆo ´ l`a tam th´u . cbˆa . c hai v´o . i hai biˆe . tsˆo ´ ˆam. Trong tru . `o . ng ho . . p n`ay ta cˆa ` n khai triˆe ’ n P (x) theo c´ac lu˜y th`u . acu ’ a g: P (x)=a 0 + a 1 g + a 2 g 2 + 58 Chu . o . ng 2. D - ath´u . c v`a h`am h˜u . uty ’ trong d´o a 0 ,a 1 , l`a h˘a ` ng sˆo ´ nˆe ´ u g = x − α v`a l`a dath´u . cbˆa . c khˆong vu . o . . t qu´a 1 trong tru . `o . ng ho . . pth´u . hai (trong tru . `o . ng ho . . p n`ay ta cˆa ` n thu . . chiˆe . n theo quy t˘a ´ cph´ep chia c´o du . ). III. Dˆo ´ iv´o . i tru . `o . ng ho . . ptˆo ’ ng qu´at, ta nhˆan hai vˆe ´ cu ’ a (2.14) v´o . i dath´u . c Q(z) v`a s˘a ´ pxˆe ´ p c´ac sˆo ´ ha . ng o . ’ vˆe ´ pha ’ id˘a ’ ng th´u . cthudu . o . . c th`anh dath´u . cv`athudu . o . . c dˆo ` ng nhˆa ´ tth´u . c gi˜u . ahaidath´u . c: mˆo . tda th ´u . cl`aP (x), c`on d ath´u . c kia l`a d ath´u . cv´o . ihˆe . sˆo ´ A,B, chu . ad u . o . . c x´ac d i . nh. Cˆan b˘a ` ng c´ac hˆe . sˆo ´ cu ’ a c´ac lu˜y th`u . ac`ung bˆa . c ta thu du . o . . c hˆe . phu . o . ng tr`ınh tuyˆe ´ n t´ınh v´o . iˆa ’ nl`aA,B, Gia ’ ihˆe . d ´o, ta t`ım du . o . . c c´ac hˆe . sˆo ´ A,B, Phu . o . ng ph´ap n`ay go . i l`a phu . o . ng ph´ap hˆe . sˆo ´ bˆa ´ tdi . nh. Ta c´o thˆe ’ x´ac di . nh hˆe . sˆo ´ b˘a ` ng c´ach kh´ac l`a cho biˆe ´ n x trong dˆo ` ng nhˆa ´ tth´u . cnh˜u . ng tri . sˆo ´ t`uy ´y (ch˘a ’ ng ha . n c´ac gi´a tri . d ´o l`a nghiˆe . m thu . . c cu ’ amˆa ˜ usˆo ´ ). C ´ AC V ´ IDU . V´ı d u . 1. Khai triˆe ’ n c´ac phˆan th´u . ch˜u . uty ’ sau th`anh tˆo ’ ng c´ac phˆan th ´u . cco . ba ’ n 1) 2x 3 +4x 2 + x +2 (x − 1) 2 (x 2 + x +1) , 2) x 2 − 2x (x − 1) 2 (x 2 +1) 2 · Gia ’ i. 1) V`ı tam th´u . cbˆa . c hai x 2 + x+1 khˆong c´o nghiˆe . m thu . . cnˆen R 1 (x)= 2x 3 +4x 2 + x +2 (x − 1) 2 (x 2 + x +1) = B 1 (x −1) + B 2 (x −1) 2 + Mx+ N x 2 + x +1 · Quy dˆo ` ng mˆa ˜ usˆo ´ ta c´o 2x 3 +4x 2 + x +2 (x − 1) 2 (x 2 + x +1) = B 1 (x 3 − 1) + B 2 (x 2 + x +1)+(Mx + N)(x 2 −2x +1) (x − 1) 2 (x 2 + x +1) · 2.2. Phˆan th´u . ch˜u . uty ’ 59 Cˆan b˘a ` ng hˆe . sˆo ´ cu ’ a x 0 , x 1 , x 2 v`a x 3 trong c´ac tu . ’ sˆo ´ ta thu d u . o . . chˆe . phu . o . ng tr`ınh x 3    B 1 + B 2 + N =2, x 2    B 2 + M −2N =1, x 1    B 2 + N −2M =4, x 0    B 1 + M =2. Gia ’ ihˆe . phu . o . ng tr`ınh ta c´o B 1 =2,B 2 =3,M =0,N =1. T`u . d´o R 1 (x)= 2 x − 1 + 3 (x − 1) 2 + 1 x 2 + x +1 · 2) Ta c´o R 2 = x 2 − 2x (x − 1) 2 (x 2 +1) 2 = A 1 x −1 + A 2 (x −1) 2 + M 1 x + N 1 x 2 +1 + M 2 x + N 2 (x 2 +1) 2 · Quy d ˆo ` ng mˆa ˜ usˆo ´ v`a cˆan b˘a ` ng c´ac tu . ’ sˆo ´ ta c´o x 2 − 2x = A 1 (x −1)(x 2 +1) 2 + A 2 (x 2 +1) 2 +(M 1 x + N 1 )(x −1) 2 (x 2 +1) +(M 2 x + N 2 )(x − 1) 2 . So s´anh c´ac hˆe . sˆo ´ cu ’ a c´ac lu˜y th`u . ac`ung bˆa . co . ’ hai vˆe ´ ta thu du . o . . c x 5    A 1 + M 1 =0, x 4    − A 1 + A 2 − 2M 1 + N 1 =0, x 3    2A 1 +2M 1 −2N 1 + M 2 =0, x 2    − 2A 1 +2A 2 − 2M 1 +2N 1 +2N 1 − 2M 2 + N 2 =1, x 1    A 1 + M 1 − 2N 1 + M 2 − 2N 2 = −2, x 0    − A 1 + A 2 + N 1 + N 2 =0. T`u . d ´o suy ra A 1 = 1 2 ,A 2 = − 1 4 ,M 1 = − 1 2 , N 1 = − 1 4 ,M 2 = − 1 2 ,N 2 =1 60 Chu . o . ng 2. D - ath´u . c v`a h`am h˜u . uty ’ v`a do vˆa . y x 2 − 2x (x − 1) 2 (x 2 +1) 2 = 1 2 x −1 + − 1 4 (x −1) 2 + − 1 2 x − 1 4 x 2 +1 + − 1 2 x +1 (x 2 +1) 2 · V´ı d u . 2. C˜ung ho ’ inhu . trˆen 1) R 1 (x)= x 4 x 4 +5x 2 +1 ;2)R 2 (x)= 1 x 4 +1 · Gia ’ i. 1) R 1 (x) l`a phˆan th´u . ch˜u . uty ’ khˆong thu . . csu . . nˆen d ˆa ` u tiˆen cˆa ` n thu . . chiˆe . n ph´ep chia: x 4 x 4 +5x 2 +4 =1− 5x 2 +4 x 4 +5x 2 +4 =1+R 3 (x). Ch´u´yr˘a ` ng x 4 +5x 2 +4=(x 2 + 1)(x 2 + 4), do d´o R 3 = − 5x 2 +4 (x 2 + 1)(x 2 +4) = M 1 x + N 1 x 2 +1 + M 2 x + N 2 x 2 +4 · Quy d ˆo ` ng mˆa ˜ usˆo ´ v`a so s´anh hai tu . ’ sˆo ´ ta thu d u . o . . c −5x 2 − 4=(M 1 x + N 1 )(x 2 +4)+(M 2 x + N 2 )(x 2 +1) v`a tiˆe ´ p theo l`a cˆan b˘a ` ng c´ac hˆe . sˆo ´ cu ’ a c´ac lu˜y th`u . ac`ung bˆa . ccu ’ a x ta thu du . o . . chˆe . phu . o . ng tr`ınh x 3    M 1 + M 2 =0, x 2    N 1 + N 2 = −5,    ⇒ M 1 = M 2 =0,N 1 = 1 3 ,N 2 = − 16 3 · x 1    4M 1 + N −2=0, x 0    4N 1 + N −2=−4 Vˆa . y R 1 (x)=1+ 1 3 · 1 x 2 +1 − 16 3 · 1 x 2 +4 · 2.2. Phˆan th´u . ch˜u . uty ’ 61 2) V`ı x 4 +1=(x 2 +1) 2 −2x 2 =(x 2 + √ 2x + 1)(x 2 − √ 2x +1) nˆen R 2 = 1 x 4 +1 = M 1 x + N 1 x 2 + √ 2x +1 + M 2 x + N 2 x 2 − √ 2x +1 · T`u . dˆo ` ng nhˆa ´ tth´u . c 1 ≡ (M 1 x + N 1 )(x 2 − √ 2x +1)+(M +2x + N 2 )(x 2 + √ 2x +1), tiˆe ´ n h`anh tu . o . ng tu . . nhu . trˆen ta c´o M 1 = −M 2 = 1 2 √ 2 ,N 1 = N 2 = 1 2 · Do d ´o 1 x 4 +1 = 1 2 √ 2 x + √ 2 x 2 + √ 2x +1 − 1 2 √ 2 x − √ 2 x 2 − √ 2x +1 · V´ı d u . 3. T`ım khai triˆe ’ n phˆan th´u . c 1) R 1 (x)= x +1 (x − 1)(x − 2)x ;2)R 2 (x)= x 2 +2x +6 (x − 1)(x −2)(x −4) · Gia ’ i. 1) V`ı mˆa ˜ usˆo ´ chı ’ c´o nghiˆe . md o . n0, 1, 2nˆen x +1 x(x −1)(x −2) = A 1 x + A 2 x − 1 + A 2 x − 2 · ´ Ap du . ng cˆong th´u . c (2.17) ta du . o . . c A 1 = x +1   x=0 (x −1)(x −2)   x=0 = 1 2 ; A 2 = x +1 x(x −2)    x=1 = −2,A 3 = x +1 x(x − 1)    x=2 = 3 2 · Vˆa . y R 1 (x)= 1 2x + −2 x −1 + 3 2(x − 2) · 62 Chu . o . ng 2. D - ath´u . c v`a h`am h˜u . uty ’ 2) Tu . o . ng tu . . ta c´o R 2 (x)= x 2 +2x +6 (x −1)(x −2)(x −4) = A 1 x − 1 + B x − 2 + C x − 3 V`ımˆa ˜ usˆo ´ cu ’ a R 2 (x)chı ’ c´o nghiˆe . mdo . nnˆen A = x 2 +2x +6 (x − 2)(x − 4)    x=1 =3, B = x 2 +2x +6 (x − 1)(x − 4)    x=2 = −7, C = x 2 +2x +6 (x − 1)(x − 2)    x=4 =5. Do d ´o R 2 (x)= 3 x −1 − 7 x − 2 + 5 x − 4 · Nhˆa . nx´et. Trong mˆo . tsˆo ´ tru . `o . ng ho . . pd ˘a . cbiˆe . t, viˆe . c khai triˆe ’ n phˆan th ´u . ch˜u . uty ’ c´o thˆe ’ thu du . o . . cdo . n gia ’ nho . n v`a nhanh ho . n. Ch˘a ’ ng ha . n, dˆe ’ khai triˆe ’ n phˆan th´u . c 1 x 2 (1 + x 2 ) 2 th`anh tˆo ’ ng c´ac phˆan th´u . cco . ba ’ n ta c´o thˆe ’ thu . . chiˆe . nnhu . sau: 1 x 2 (x 2 +1) 2 = (1 + x 2 ) − x 2 x 2 (x 2 +1) 2 = 1 x 2 (x 2 +1) − 1 (x 2 +1) 2 = (1 + x 2 ) − x 2 x 2 (x 2 +1) − 1 (x 2 +1) 2 = 1 x 2 − 1 x 2 +1 − 1 (x 2 +1) 2 ·  V´ı d u . 4. Khai triˆe ’ n c´ac phˆan th´u . ch˜u . uty ’ sau: 1) x 4 +5x 3 +5x 2 − 3x +1 (x +2) 5 ;2) x 5 +3x 4 + x 3 − 2x 2 +2x +3 (x 2 + x +1) 3 · Gia ’ i. 1) D ˘a . t g =(x + 2). Khi d´ob˘a ` ng c´ach khai triˆe ’ ntu . ’ sˆo ´ theo c´ac lu˜y th`u . acu ’ a x +2 b˘a ` ng c´ach ´ap du . ng cˆong th´u . c nhi . th ´u . c Newton 2.2. Phˆan th´u . ch˜u . uty ’ 63 ta thu du . o . . c x 4 +5x 3 +5x 2 − 3x +1 (x +2) 5 = = [(x +2)− 2] 4 + 5[(x +2)−2] 3 + 5[(x +2)− 2] 2 − 3[(x +2)− 2)] + 1 (x +2) 5 = 3+5g − g 2 − 3g 3 + g 4 g 5 = 3 g 5 + 5 g 4 − 1 g 3 − 3 g 2 + 1 g = 3 (x +2) 5 + 5 (x +2) 4 − 1 (x +2) 3 − 3 (x +2) 3 + 1 x +2 · 2) D˘a . t g = x 2 + x +1. D´o l`a tam th´u . cbˆa . c hai khˆong c´o nghiˆe . m thu . . c. ´ Ap du . ng thuˆa . t to´an chia c´o du . ta c´o P (x)=x 5 +3x 4 + x 3 −2x 2 +2x +3 =(x 2 + x + 1)(x 3 +2x 2 −2x −2) + 6x +5 t´u . cl`a P = g ·q 1 + r 1 ,q 1 = x 3 +2x 2 − 2x − 2,r 1 =6x +5. Ta la . i chia q 1 cho g v`a thu du . o . . c q 1 = gq 2 + r 2 , degq 2 < deg(g) q 2 = x +1,r 2 = −4x −3. Nhu . vˆa . y P = gq 1 + r 1 = r 1 + g(r 2 + gq 2 ) = r 1 + r 2 g + q 2 g 2 . T`u . d ´o suy ra P g 3 = r 1 g 3 + r 2 g 3 + q 2 · 1 g = 6x +5 (x 2 + x +1) 3 − 4x +3 (x 2 + x +1) 2 + x +1 x 2 + x +1 ·  64 Chu . o . ng 2. D - ath´u . c v`a h`am h˜u . uty ’ B ` AI T ˆ A . P Trong c´ac b`ai to´an sau d ˆay, h˜ay khai triˆe ’ n phˆan th´u . ch˜u . uty ’ d˜a cho th`anh tˆo ’ ng h˜u . uha . n c´ac phˆan th´u . cco . ba ’ n thu . . c. 1. 2x − 3 x(x 2 − 1)(x 2 − 4) (DS. − 3 4x + 1 6(x − 1) + 5 6(x +1) + 1 24(x − 2) − 7 24(x +2) ) 2. x +1 x 3 − 1 (DS. 2 3(x − 1) − 2x +1 3(x 2 + x +1) ) 3. 1 x 3 (x − 1) 4 (DS. 10 x + 4 x 2 + 1 x 3 − 10 x −1 + 6 (x −1) 2 − 3 (x − 1) 3 + 1 (x − 1) 4 ) 4. 1 (x 4 − 1) 2 (DS. − 3 16(x − 1) + 1 16(x − 1) 2 + 3 16(x +1) + 1 16(x +1) 2 + 1 4(x 2 +1) + 1 4(x 2 +1) 2 ) 5. 2x − 1 (x +1) 3 (x 2 + x +1) (D S. 2 x +1 − 1 (x +1) 2 − 3 (x +1) 3 − 2x − 1 x 2 + x +1 ) 6. 1 x(x 2 +1) 3 (DS. 1 x + x (x 2 +1) 3 − x (x 2 +1) 2 − x x 2 +1 ) 7. x 2 +3x +1 x 4 (x 2 +1) (DS. 1 x 4 + 3 x 3 − 3 x + 3x x 2 +1 ) 8. x 5 +3x 3 − x 2 +4x −2 (x 2 +1) 3 (DS. 2x − 1 (x 2 +1) 3 + x − 1 (x 2 +1) 2 + x x 2 +1 ) 9. x 5 +2x 3 − 6x 2 − 3x − 9 (x 2 + x +2) 3 (DS. 1 (x 2 + x +2) 3 + x −1 (x 2 + x +2) 2 + x − 2 x 2 + x +2 ) 10. 2x − 1 x(x +1) 2 (x 2 + x +1) 2 [...]... −7 15  1 5  1 14) 12 11 2 T´ t´ c´c ma trˆn ınh ıch a a     5 2 1 1 3 −2     1) 5 2 3  3 −4 −5 6 5 2 2 1 3     3 4 9 5 6 4     2) 2 1 6  8 9 7  5 3 5 −4 −5 3    1 2 −2  1 3 1 1 −2 4     3)   2 3 2 1 −2 5  3 1 4 1 3 −2  2  4  4)  −2 1    1 3 1 2 1       2  1 3 1 2 1   1 3 2   (DS  5 10 9 ) −5 0 −7   11 9 13   (DS −22 −27 17 )... 17 ) 29 32 26   1 2 0  4 6 6   (DS  )  12 3 20 1 5 2   1 7   (DS  ) 3 9 Chu.o.ng 3 Ma trˆn D nh th´.c a -i u 82   1 1 1 3 3 1 1 2  0 0   5) )   (DS 1 3 −5 1 1 1  0 0 1 −2     3 2 1 1     6) 2 3 2 1 (DS 6 4 2) 9 6 3 3 ´ 3 T´ c´c t´ AB v` BA nˆu ınh a ıch a e   1 3 0 −2 1 1  5 1 3 1   ıch 1) A =  (DS T´ AB , B =  3 0 −2 2 0 1 4 4 1 2 ` ı... ˜ ˜ = B n + C1 B n 1 B = B n + nB n 1 B = n3n 1 0 3n 0 = n 0 3 0 n3n 1 0 1 0 0 0 n3n 1 3n 0 3n n3n 1 + = = 0 0 0 3n 0 3n 2) Tu.o.ng tu nhu trˆn ta c´ e o A= B 1 1 3 0 4 1 ˜ = B + B + = 0 0 0 3 0 3 m 3 0 = 0 3 1 1 ˜ Bm = 0 0 m = 3m 0 , 0 3m = 1 1 0 0 m ∀m (3. 3) 1 (3. 4) Chu.o.ng 3 Ma trˆn D nh th´.c a -i u 80 ˜ ˜ ’ ´ e o ea o u Tiˆp theo do B B = BB nˆn ta c´ thˆ ´p dung cˆng th´.c e 1 2 ˜ ˜ ˜ ˜ An... n 1 B + Cn B n−2 B 2 + · · · + B n (3. 5) ˜ a o Ta t´ Cn B n−k B k Theo (3. 3) v` (3. 4) ta c´ ınh k k Cn 3n−k 0 0 3n−k n−k k k Cn 3n−k Cn 3n−k 1 1 3n−k k 3 = = Cn 0 0 0 0 0 0 (3. 6) T` (3. 6), (3. 3) v` (3. 5) ta thu du.o.c u a n k k Cn 3n−k Cn 3n−k 3n 0 + A = 0 0 0 3n k =1   n n k k Cn 3n−k 0 + Cn 3n−k 3n +  = k =1 k =1 n 0 3 n V` 3n + ı n n k Cn 3n−k = (3 + 1) n = 4n v` 0 + a k =1 k Cn 3n−k = k =1 3n... ty a u u ’ 7 3 3x + 2 1 6x + 2 + − 2 (DS − + − 2 ) 2 x x + 1 (x + 1) x + x + 1 (x + x + 1) 2 x2 11 2 (x + 1) (x2 + x + 1) 2 1 1 x (DS 2 ) + 2 − 2 x + 1 x + x + 1 (x + x + 1) 2 1 12 5 4 + x3 − x2 + x − 1 x −x 1 2x + 1 1 1 − − ) (DS 2+x +1 2 − x + 1) 3( x − 1) 6 x 2(x 65 Chu.o.ng 3 - Ma trˆn Dinh th´.c a u 3 .1 Ma trˆn 67 a 3 .1. 1 - Dinh ngh˜ ma trˆn 67 ıa a 3 .1. 2 ´ C´c ph´p...   am b1 am b2 am bn am Chu.o.ng 3 Ma trˆn D nh th´.c a -i u 74 ´ V´ du 3 T´ AB v` BA nˆu ı ınh a e   1 3 2 1   1) A = , B = 3 0 1 2 3   1 0 1 4 1   , B =  1 3  2) A = 2 0 1 1 1 ´ ’ Giai 1) Theo quy t˘c nhˆn c´c ma trˆn ta c´ a a a a o   1 3 2 1   3 1+ 2 3 +1 3 12 AB = = 3  = 0 1 2 0 1+ 1 3+ 2 3 9 3 ` T´ BA khˆng tˆn tai v` ma trˆn B khˆng tu.o.ng th´ v´.i ma ıch o o ı a o... = 4n − 3n , do vˆy a An = 4n 4n − 3n 0 3n ` ˆ BAI TAP ´ 1 T´ A + B, AB v` BA nˆu ınh a e 1 3  1  2) A = 2 3 1) A = 2 , 4 B=  1 0  1 1 , 1 2 4 −4 ; 0 i   −2 1 2   B= 0 4 5  2 3 7 n k=0 k Cn 3n−k − 3 .1 Ma trˆn a 81 (DS 1) A + B = BA = 5 −2 4 −4 + 2i , AB = , 3 4+i 12 12 + 4i −8 −8 ; 3 4i  1  2) A + B =  2 5  6  BA =  23 17    0 2 1 3 3    5 6, AB = −2 3 16 , −4... trˆn B Do d´ o a   −2 0 1 4 1   AB =  1 3 2 0 1 1 1 = 1 · (−2) + 4 · 1 + ( 1) ( 1) 1 · 0 + 4 · 3 + ( 1) · 1 2 · (−2) + 0 · 1 + (1) · ( 1) 2·0+0 3 +1 1 = 3 11 −5 1 Tu.o.ng tu., ma trˆn B tu.o.ng th´ch v´.i a ı o  −2 −8  BA =  7 4 1 −4 V´ du 4 1) Cho ma trˆn A = ı a ho´n v´.i A (AX = XA) a o ma trˆn A v` a a  2  2 2 0 1 T` moi ma trˆn X giao ım a 0 0 3 .1 Ma trˆn a 75 2) T` moi... khˆng tu.o.ng th´ch v´.i ma trˆn B; BA = o o a o ı o a 10 15 −5 ) 11 10 10   2 0 1 −4   2) A =  (DS T´ AB khˆng ıch o , B = 5 1 0 3 3 1  0 1 ` ı tˆn tai v` A khˆng tu.o.ng th´ch v´.i B; BA = 11 1 ) o o ı o  3) A = 1 6 1 2 3 4  , B =  1 2 1 −2 3 3  5 3 8 2    2 1 0 1 28 27 8 ` , t´ BA khˆng tˆn tai) ıch o o 15 14 13 4) A = cos α − sin α cos β − sin β , B= cos α cos α sin... = a a 1 2 5 6 1+ 5 2+6 6 8 + = = 3 4 7 8 3+ 7 4+8 10 12 2) λA = 3 · 1 2 1 4 0 1 = 1 · 3 2 · 3 1 · 3 4 3 0 3 1 3 = 3 .1 Ma trˆn a 73 3 6 3 12 0 3 V´ du 2 Trong tru.`.ng ho.p n`o th` ı o a ı: ’ nhˆn bˆn phai mˆt ma trˆn h`ng v´.i mˆt ma trˆn cˆt ? ’ o a o 1) c´ thˆ a e o e o a a o i mˆt ma trˆn h`ng ? ’ ’ o a a 2) c´ thˆ nhˆn bˆn phai mˆt ma trˆn cˆt v´ o e a e o a o o ’ i 1) Ma trˆn . 1) 4 (DS. 10 x + 4 x 2 + 1 x 3 − 10 x 1 + 6 (x 1) 2 − 3 (x − 1) 3 + 1 (x − 1) 4 ) 4. 1 (x 4 − 1) 2 (DS. − 3 16 (x − 1) + 1 16(x − 1) 2 + 3 16 (x +1) + 1 16(x +1) 2 + 1 4(x 2 +1) + 1 4(x 2 +1) 2 ) 5. 2x − 1 (x +1) 3 (x 2 +. trˆa . n ta c´o  12 34  +  56 78  =  1+ 5 2+6 3+ 7 4+8  =  68 10 12  . 2) λA =3  12 1 40 1  =  1 · 32 · 3 1 · 3 4 · 30 · 31 3  = 3 .1. Ma trˆa . n 73  36 3 12 0 3  . V´ı d u . 2 x +1) (D S. 2 x +1 − 1 (x +1) 2 − 3 (x +1) 3 − 2x − 1 x 2 + x +1 ) 6. 1 x(x 2 +1) 3 (DS. 1 x + x (x 2 +1) 3 − x (x 2 +1) 2 − x x 2 +1 ) 7. x 2 +3x +1 x 4 (x 2 +1) (DS. 1 x 4 + 3 x 3 − 3 x + 3x x 2 +1 ) 8. x 5 +3x 3 −

Ngày đăng: 29/07/2014, 07:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w