1. Trang chủ
  2. » Giáo án - Bài giảng

Truyền nhiệt CII Dẫn nhiệt ổn định một chiều

48 983 6

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 48
Dung lượng 0,95 MB

Nội dung

Nguyễn toàn phong 1 of 48 Chương II – Dẫn Nhiệt n ĐònhMột Chiều Chương II Friday, September 17, 2010 DẪN NHIỆT ỔN ĐỊNH MỘT CHIỀU A. PHƯƠNG TRÌNH VI PHÂN DẪN NHIỆT Ta lần lượt khảo sát trong ba hệ tọa độ tương ứng với các trường hợp trong vách phẳng, trong vật hình trụ và vật hình cầu. I. TRONG HỆ TỌA ĐỘ VUÔNG GÓC Xét trường hợp dẫn nhiệt qua vách phẳng rộng so với chiều dày, mật độ dòng nhiệt đồng đều Nhiệt độ chỉ thay đổi theo phương vuông góc vách → Mặt đẳng nhiệt song song bề mặt vách Xét phần tử vách như sau → Chọn trục tọa độ vuông góc mặt đẳng nhiệt → Phương trình bảo toàn năng lượng cho phần tử khảo sát như sau         ∆ =         ∆ +         ∆+ −         Vtronglượngnăng thiênbiến Vtrongsinhphát lượngnhiệt xxtạiradẫn lượngnhiệt xtạivàodẫn lượngnhiệt Nguyễn toàn phong 2 of 48 Chương II – Dẫn Nhiệt n ĐònhMột Chiều τ∆ ∆ =+ − ∆ ∆∆+ V Vxx x E QQ Q (2-1) Với ( ) ( )        ∆⋅⋅= ∆⋅= −⋅∆⋅⋅⋅ρ=− ⋅⋅∆= −=∆ ∆ τ τ∆+τττ∆+τ ττ∆+τ∆ xFqVqQ ttxFCttCm EEE vvV V Thế vào phương trình 2-1, ta có: τ∆ − ⋅∆ ⋅⋅⋅ρ=∆⋅⋅+− ττ∆+τ ∆+ tt xFCxFqQ Q vxxx Nguyễn toàn phong 3 of 48 Chương II – Dẫn Nhiệt n ĐònhMột Chiều Chia phương trình trên cho xF ∆⋅ , ta được τ∆ − ⋅⋅ρ=+ ∆ − ⋅− ττ∆+τ ∆+ tt Cq x QQ F 1 v xxx (2-2) Lấy giới hạn    →τ∆ →∆ 0 0x τ∂ ∂ ⋅⋅ρ=+       ∂ ∂ ⋅⋅λ ∂ ∂ ⋅ t Cq x t F xF 1 v (2-3) Trong đó       ∂ ∂ ⋅⋅λ− ∂ ∂ = ∂ ∂ = ∆ − ∆+ →∆ x t F xx Q x QQ lim xxxx 0x Với diện tích constF = , phương trình 2-3 được viết lại τ∂ ∂ ⋅⋅ρ=+       ∂ ∂ ⋅λ ∂ ∂ t C q x t x v (2-4) Nguyễn toàn phong 4 of 48 Chương II – Dẫn Nhiệt n ĐònhMột Chiều II. TRONG HỆ TỌA ĐỘ TRỤ Xét trường hợp dẫn nhiệt qua vách trụ có chiều dài lớn so với bán kính, mật độ dòng nhiệt đồng đều Nhiệt độ chỉ thay đổi theo phương bán kính → Mặt đẳng nhiệt là những mặt trụ đồng tâm Xét phần tử vách như sau → Chọn trục tọa độ trùng với trục ống → Phương trình bảo toàn năng lượng cho phần tử khảo sát như sau Nguyễn toàn phong 5 of 48 Chương II – Dẫn Nhiệt n ĐònhMột Chiều         ∆ =         ∆ +         ∆+ −         Vtronglượngnăng thiênbiến Vtrongsinhphát lượngnhiệt rrtạiradẫn lượngnhiệt rtạivàodẫn lượngnhiệt τ∆ ∆ =+− ∆ ∆∆+ V Vrrr E QQQ (2-5) Với ( ) ( )        ∆⋅⋅=∆⋅= −⋅∆⋅⋅⋅ρ=−⋅⋅∆= −=∆ ∆ ττ∆+τττ∆+τ ττ∆+τ∆ rFqVqQ ttrFCttCm EEE vvV V Thế vào phương trình 2-5, ta có: τ∆ − ⋅∆⋅⋅⋅ρ=∆⋅⋅+− ττ∆+τ ∆+ tt rFCrFqQQ vrrr Chia phương trình trên cho rF ∆⋅ , lấy giới hạn và sử dụng đònh luật Fourier τ∆ − ⋅⋅ρ=+ ∆ − ⋅− ττ∆+τ ∆+ tt Cq r QQ F 1 v rrr (2-6) τ∂ ∂ ⋅⋅ ρ =+       ∂ ∂ ⋅⋅ λ ∂ ∂ ⋅ t Cq r t F rF 1 v (2-7) Với diện tích Lr2F ⋅⋅π= , phương trình 2-7 được viết lại τ∂ ∂ ⋅⋅ρ=+       ∂ ∂ ⋅λ⋅ ∂ ∂ ⋅ t Cq r t r rr 1 v (2-8) Nguyễn toàn phong 6 of 48 Chương II – Dẫn Nhiệt n ĐònhMột Chiều III. TRONG HỆ TỌA ĐỘ CẦU Xét trường hợp dẫn nhiệt qua vách cầu, mật độ dòng nhiệt đồng đều trên bề mặt Nhiệt độ chỉ thay đổi theo phương bán kính → Mặt đẳng nhiệt là những mặt cầu đồng tâm Xét phần tử vách như sau Thực hiện tương tự như phần vách trụ, với lưu ý diện tích 2 r4F ⋅π= thế vào 2-7, phương trình dẫn nhiệt τ∂ ∂ ⋅⋅ρ =+       ∂ ∂ ⋅λ⋅ ∂ ∂ ⋅ t Cq r t r r r 1 v 2 2 (2-9) Nguyễn toàn phong 7 of 48 Chương II – Dẫn Nhiệt n ĐònhMột Chiều IV. TRƯỜNG HP TỔNG QUÁT CHO TRƯỜNG MỘT CHIỀU Từ các phương trình 2-4, 2-8 và 2-9, ta có dạng tổng quát cho trường một chiều như sau: τ∂ ∂ ⋅⋅ρ =+       ∂ ∂ ⋅λ⋅ ∂ ∂ ⋅ t Cq r t r r r 1 v n n (2-10) i. Tọa độ vuông góc    ≡ = rx 0n ii. Tọa độ trụ 1n = iii. Tọa độ cầu 2n = Nguyễn toàn phong 8 of 48 Chương II – Dẫn Nhiệt n ĐònhMột Chiều Trường hợp hệ số dẫn nhiệt const=λ τ∂ ∂ ⋅ = λ +       ∂ ∂ ⋅ ∂ ∂ ⋅ t a 1 q r t r r r 1 v n n (2-11) i. Trường hợp dẫn nhiệt ổn đònh 0 q dr dt r dr d r 1 0 t v n n = λ +       ⋅⋅→= τ∂ ∂ (2-12) ii. Trường hợp không có nguồn nhiệt bên trong τ∂ ∂ ⋅=       ∂ ∂ ⋅ ∂ ∂ ⋅→= t a 1 r t r rr 1 0q n n v (2-13) iii. Trường hợp dẫn nhiệt ổn đònh không có nguồn nhiệt bên trong 0 dr dt r dr d 0q 0 t n v =       ⋅→      = = τ∂ ∂ (2-14) Nguyễn toàn phong 9 of 48 Chương II – Dẫn Nhiệt n ĐònhMột Chiều B. ĐIỀU KIỆN BIÊN - ĐIỀU KIỆN BAN ĐẦU Giải phương trình vi phân ta được nghiệm tổng quát, đối với từng trường hợp cụ thể sẽ có tương ứng điều kiện biên, kết hợp lại sẽ xác đònh được phương trình riêng tương ứng. I. ĐIỀU KIỆN BAN ĐẦU Là hàm phân bố nhiệt độ tại thời điểm bắt đầu khảo sát, tổng quát ( ) ( ) z,y,xt0,z,y,xt = (2-15) II. ĐIỀU KIỆN BIÊN THEO NHIỆT ĐỘ Nhiệt độ bề mặt rất dễ xác đònh, do vậy điều kiện biên nhiệt có thể cho theo nhiệt độ bề mặt Ví dụ cho trường hợp vách phẳng có chiều dày δ ( ) ( )    =τδ =τ 2 1 t,t t,0t (2-16) Nguyễn toàn phong 10 of 48 Chương II – Dẫn Nhiệt n ĐònhMột Chiều III. ĐIỀU KIỆN BIÊN MẬT ĐỘ DÒNG NHIỆT Khi biết đầy đủ thông tin về tương tác năng lượng ở bề mặt → xác đònh được mật độ dòng nhiệt → được sử dụng làm điều kiện biên         = ∂ ∂ ⋅λ−= xtrívòmặtbềtại đổitraonhiệtdòng x t q (2-17) Lưu ý: Chiều hướng dòng nhiệt dẫn trong vách và dòng nhiệt trên bề mặt Điều kiện biên: ( ) 0 q x ,0t = ∂ τ∂ ⋅λ− ( ) δ = ∂ τδ∂ ⋅λ− q x ,t [...]... Nguyễn toàn phong Chiều 14 of 48 (2-22.a) (2-22.b) Chương II – Dẫn Nhiệt n ĐònhMột VII ĐIỀU KIỆN BIÊN SUY RỘNG tổng nhiệt lượng trao đổi   nhiệt lượng dẫn     =  đến bề mặt   bằng tất cả các cách trên bề mặt      C MỘT SỐ VÍ DỤ Nguyễn toàn phong Chiều 15 of 48 Chương II – Dẫn Nhiệt n ĐònhMột D DẪN NHIỆT ỔN ĐỊNH MỘT CHIỀU KHÔNG CÓ NGUỒN NHIỆT BÊN TRONG I PHƯƠNG TRÌNH DẪN NHIỆT Từ phương... – Dẫn Nhiệt n ĐònhMột 4 Dẫn Nhiệt Qua Vách Phức Hợp Trường hợp này vách gồm tổ hợp nhiều vật liệu khác nhau Nhiệt lượng truyền qua các lớp vách: ∆t Q= ∑ Rλ (2-46) với tổng nhiệt trở ∑ R λ tính tương ứng như mạch điện trở Ví dụ tính tổng nhiệt trở cho lớp vách phức hợp sau: Nguyễn toàn phong Chiều 25 of 48 Chương II – Dẫn Nhiệt n ĐònhMột Nguyễn toàn phong Chiều 26 of 48 Chương II – Dẫn Nhiệt n ĐònhMột... 5 Nhiệt Trở Tiếp Xúc (2-47) Nguyễn toàn phong Chiều 27 of 48 Chương II – Dẫn Nhiệt n ĐònhMột III DẪN NHIỆT QUA VÁCH TRỤ 1 Trường Hợp Vách Trụ Một Lớp Xét vách trụ 1 lớp như hình bên dưới Đường kính trong d1 = 2.r1 , m Đường kính ngoài d 2 = 2.r2 , m Chiều dài L, m Hệ số dẫn nhiệt λ, W (m.K) Nhiệt độ bề mặt vách phía trong và phía ngoài là t1 và t2 Nguyễn toàn phong Chiều 28 of 48 Chương II – Dẫn Nhiệt. .. Trường hợp hệ số dẫn nhiệt λ = const ∂  n ∂t  r ⋅  = 0 ∂r  ∂r  (2-24) i Tọa độ vuông góc n = 0 ⇒  x ≡ r ii Tọa độ trụ ⇒ n =1 iii Tọa độ cầu ⇒ n=2 II DẪN NHIỆT QUA VÁCH PHẲNG Nguyễn toàn phong Chiều 16 of 48 Chương II – Dẫn Nhiệt n ĐònhMột 1 Vách Phẳng Một Lớp Xét vách phẳng đồng chất, đẳng hướng, mật độ dòng nhiệt đồng đều trên bề mặt t Chiều dày δ, m Hệ số dẫn nhiệt λ, W/(m.K) Nhiệt độ bề mặt... dẫn qua vách trụ có chiều dài L là: Q = L ⋅ q = F ⋅ qF Mật độ dòng nhiệt tính cho một đơn vò diện tích: λ q F = ⋅ ∆t W m 2 δ Mật độ dòng nhiệt tính cho một đơn vò chiều dài: F λ q  = ⋅ q F = π.d tb ⋅ q F = π.d tb ⋅ ⋅ ∆t W m dài L δ Nhiệt trở Q = t1 − t 2 = Rλ Nguyễn toàn phong Chiều t1 − t 2 W δ π.d tb ⋅ λ ⋅ L 32 of 48 (2-59) (2-60) (2-61) Chương II – Dẫn Nhiệt n ĐònhMột 2 Dẫn Nhiệt Qua Vách Trụ Nhiều... t1 R1 = VL 3 λ3 δ2 δ R3 = 3 λ2 λ3 Mật độ dòng nhiệt dẫn qua các lớp:  t −t q1 = 1 2  R1  t −t  q2 = 2 3  R2   t −t q3 = 3 4  R3  Ở chế độ dẫn nhiệt ổn đònh, dòng nhiệt qua các bề mặt đẳng nhiệt bất kỳ của các vách phẳng phải bằng nhau: Nguyễn toàn phong Chiều 20 of 48 Chương II – Dẫn Nhiệt n ĐònhMột ∂q = 0 hay q1 = q 2 = q 3 = q F ∂x Từ sơ đồ mạng nhiệt ta có t −t t −t t −t qλ = 1 2 = 1 3 =... trường nhiệt độ ln(r r1 ) t (r ) = t 1 + ⋅ (t 2 − t 1 ) ln(r2 r1 ) Theo đònh luật Fourier: C dt Q cylinder = −λ ⋅ F ⋅ = −λ ⋅ (2 π.r ⋅ L ) ⋅ 1 r dr t −t = 2π ⋅ λ ⋅ L ⋅ 1 2 , W ln(r2 r1 ) Nguyễn toàn phong Chiều 29 of 48 (2-51) (2-52) Chương II – Dẫn Nhiệt n ĐònhMột Có thể tìm nhiệt lượng truyền qua vách trụ như sau  nhiệt lượng   nhiệt lượng   biến thiên năng lượng       dẫn vào vách  −  dẫn. .. cyl Nguyễn toàn phong Chiều 30 of 48 Chương II – Dẫn Nhiệt n ĐònhMột Với nhiệt trở Rcyl R cyl = ln (r2 r1 ) ,K W 2π ⋅ λ ⋅ L (2-57) Lưu ý: Nhiệt lượng truyền qua tại hai bề mặt bằng nhau Q 2 = Q1 Nhưng mật độ dòng nhiệt khác nhau trên hai bề mặt: Q1 Q2 q1 = q2 = 2 π.r1 ⋅ L 2 π.r2 ⋅ L → q1 > q 2 Để thuận tiện trong tính toán, người ta thường tính nhiệt lượng dẫn qua ứng với L = 1 m chiều dài ống: q =... toàn phong Chiều 12 of 48 (2-20.a) (2-20.b) Chương II – Dẫn Nhiệt n ĐònhMột V ĐIỀU KIỆN BIÊN BỨC XẠ  nhiệt lượng dẫn   nhiệt lượng bức xạ        đến bề mặt  =  trên bề mặt     ∂t (0, τ ) 4 −λ⋅ = ε1 ⋅ σ ⋅ Tsurr ,1 − T 4 (0, τ ) ∂x và ∂t (0, τ ) 4 −λ⋅ = ε 2 ⋅ σ ⋅ T 4 (δ, τ ) − Tsurr ,2 ∂x Ví dụ [ Chiều 13 of 48 (2-21.a) [ Nguyễn toàn phong ] ] (2-21.b) Chương II – Dẫn Nhiệt n ĐònhMột VI ĐIỀU... – Dẫn Nhiệt n ĐònhMột Khi tính mật độ dòng nhiệt, có khái niệm hệ số truyền nhiệt như sau: Q t f1 − t f 2 qF = = , W m2 F 1 + δ1 + δ 2 + 1 (2-42) α1 λ 1 λ 2 α 2 = k F ⋅ (t f 1 − t f 2 ) kF = với 1 W (m 2 K ) 1 δ1 δ 2 1 + + + α1 λ1 λ 2 α 2 (2-43) gọi là hệ số truyền nhiệt qua vách phẳng Trường hợp vách n lớp kF = 1 W ( m 2 K ) δi 1 1 +∑ + α1 λ i α2 t1 = t f 1 − nhiệt độ t ( k +1) Nguyễn toàn phong Chiều .         =         mặtbềtrêncáchcáccảtấtbằng đổitraolượngnhiệttổng mặtbềđến dẫnlượngnhiệt C. MỘT SỐ VÍ DỤ Nguyễn toàn phong 16 of 48 Chương II – Dẫn Nhiệt n ĐònhMột Chiều D. DẪN NHIỆT ỔN ĐỊNH MỘT CHIỀU KHÔNG CÓ NGUỒN NHIỆT BÊN TRONG. ( 2-9 ) Nguyễn toàn phong 7 of 48 Chương II – Dẫn Nhiệt n ĐònhMột Chiều IV. TRƯỜNG HP TỔNG QUÁT CHO TRƯỜNG MỘT CHIỀU Từ các phương trình 2-4 , 2-8 và 2-9 , ta có dạng tổng quát cho trường một. Nguyễn toàn phong 1 of 48 Chương II – Dẫn Nhiệt n ĐònhMột Chiều Chương II Friday, September 17, 2010 DẪN NHIỆT ỔN ĐỊNH MỘT CHIỀU A. PHƯƠNG TRÌNH VI PHÂN DẪN NHIỆT Ta lần lượt khảo sát trong

Ngày đăng: 28/06/2014, 08:56

HÌNH ẢNH LIÊN QUAN

Hình dưới cho ta thấy sự tương đương của các đại lượng  trong hai công thức: - Truyền nhiệt  CII Dẫn nhiệt ổn định một chiều
Hình d ưới cho ta thấy sự tương đương của các đại lượng trong hai công thức: (Trang 19)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w