PHÒNG GD&ĐT HẠ HÒA KỲ THI CHỌN HỌC SINH GIỎI LỚP CẤP HUYỆN NĂM HỌC 2019 - 2020 MÔN: TOÁN Thời gian làm bài 150 phút (Không kể thời gian giao đề) (Đề thi có 03 trang) ĐỀ CHÍNH THỨC I PHẦN TRẮC NGHIỆM KHÁCH QUAN ( 16 Câu; 8,0 điểm) Thí sinh lựa chọn phương án trả lời ghi vào tờ giấy thi Câu Số giá trị để biểu thức A có giá trị nguyên B C Câu Cho D với độ dài ba cạnh tam giác Giá trị biểu thức A B C Câu Tìm tất giá trị để hàm số A B đến đường thẳng A lớn nhất? C là D để hệ phương trình B Câu Giá trị nguyên nhỏ A thẳng hàng? D Tìm để khoảng cách từ gốc tọa C có phương trình Câu Điều kiện tham số kiện D B thỏa mãn A đồng biến C Câu Tìm để điểm A B Câu Cho đường thẳng độ D có nghiệm C D để hệ phương trình B có nghiệm thỏa mãn điều C Câu Cho phương trình (với D tham số) Gọi phương trình Giá trị lớn biểu thức A B Câu 11 Cho A hai nghiệm C D Câu Tìm để phương trình: góc vng mợt tam giác vng có cạnh huyền A B C Câu 10 Cho có Tỷ số diện tích A B C , Biết B C có hai nghiệm độ dài hai cạnh ? D Đường phân giác góc cắt D thỏa mãn D Số đo góc Câu 12 Cho tam giác A Câu 13 Với A vuông Chu vi tam giác B C Biết chu vi hai tam giác D góc nhọn Giá trị lớn biểu thức B C D Câu 14 Cho vng góc với đường kính Biết A Gọi ; B Câu 15 Cho ( , từ điểm điểm nằm Thì diện tích C cách tâm vẽ dây D khoảng B Qua kẻ hai tiếp tuyến tiếp điểm) Bán kính đường trịn nội tiếp tam giác A C , với D Câu 16 Trên đường học về, ba bạn Tốn, Hạ, Hịa phát xe máy vượt đèn đỏ Các công an muốn ba bạn cung cấp thông tin biển số xe, bạn nhớ chi tiết sau: - Bạn Hạ nói: “Đó số có chữ số” - Bạn Hịa nói: “Hai chữ số đầu giống nhau, hai chữ số cuối giống nhau” - Bạn Tốn khẳng định: “Đó số phương” Nhờ thơng tin cơng an tìm xe vi phạm khen ngợi ba bạn học sinh Hai chữ số biển số xe là: A B C D II PHẦN TỰ LUẬN: (12điểm) Câu (3,0 điểm) a) Cho biểu thức: với số nguyên Chứng minh chia hết cho P chia hết cho b) Cho số thoả mãn: Tính: Câu (3,5 điểm) a) Giải phương trình: b) Giải hệ phương trình: Câu (4 điểm) Cho tam giác vng , đường cao Gọi tâm đường tròn nội tiếp tam giác Gọi giao điểm đường thẳng với cạnh a) Chứng minh: tâm đường tròn ngoại tiếp tam giác b) Chứng minh: Đường tròn ngoại tiếp tam giác đường tròn nội tiếp tam giác có bán kính Câu (1,5 điểm) Cho số dương thỏa mãn: Tìm giá trị lớn biểu thức: -HẾT KỲ THI CHỌN HỌC SINH GIỎI CẤP HUYỆN NĂM HỌC 2019-2020 HƯỚNG DẪN CHẤM MÔN TOÁN LỚP I.PHẦN TRẮC NGHIÊM KHÁCH QUAN( điểm) Mỗi câu đúng: 0,5 điểm Câu 10 11 12 13 14 15 16 Đáp án C B D A B C C A A D B B D C D C II PHẦN TỰ LUẬN: (12điểm) Đáp án Điểm Câu (3,0 điểm) a) Cho biểu thức: Chứng minh Vì với số nguyên chia hết cho P chia hết cho chia hết cho , đặt , với k ngun, ta có (Với A=……) Vì chia hết số a,b,c số chẵn có số lẻ, số chẵn suy tích abc chia hết cho Vậy P chia hết cho b) Cho a b số thoả mãn: 1,5 0,5 0,5 0,5 1,5 Tính: Ta thấy 0, 0,25 (1) Tương tự ta có: (2) 0,25 Từ (1) (2) a = - b Nên 0,5 Câu (3,5 điểm) 0,5 Đáp án Điểm a)( 1,75 điểm) ĐKXĐ 0,5 0,5 0,25 Cả giá trị thỏa mãn ĐKXĐ Vậy b) (1,75 điểm) Giải hệ phương trình: ĐKXĐ: 0,25 0,5 Từ (1) Thay 0,25 vào (1) ta pt: 0,25 (Thỏa mãn ĐKXĐ) 0,25 Vậy HPT có nghiệm (x,y)=(16;25) 0,25 Câu (4 điểm) Cho tam giác vuông , đường cao Gọi tâm Đáp án đường tròn nội tiếp tam giác đường thẳng với cạnh a) Chứng minh: Điểm Gọi giao điểm tâm đường tròn ngoại tiếp tam giác b) Chứng minh: Đường tròn ngoại tiếp tam giác tam giác có bán kính đường trịn nội tiếp A L T I K J C B E Vẽ hình: H M F a) (1,5 điểm) Ta có: 0,5 ; cân C Có CI phân giác góc C nên CI đồng thời đường trung trực AE 0,5 Tương tự, BI trung trực AF AEF 0,5 I tâm đường tròn ngoại tiếp tam giác b) (2,5đ) Gọi M hình chiếu I BC IM=r (r bán kính đường tròn nội tiếp ) M trung điểm EF 0,5 Tam giác ABF cân B, tam giác ACE cân C nên 0,5 Hạ IT; IL vng góc với AB; AC ta có ATIL hình vuông nên AT=AL=IT=IL=r đồng thời BT=BM; CL=CM (T/c tt cắt nhau) suy ra: AB+AC-BC=2r 0,5 Vì A đối xứng với E qua CI nên góc vng K mà 0,5 Đáp án Điểm 0,5 Tương tự ( Điều phải chứng minh) Câu 4: (1,5 điểm) Cho số dương thỏa mãn: Tìm giá trị lớn biểu thức: Đặt số dương đồng thời 0,25đ Ta có 0,5đ Tương tự có 0,25đ Khi Đẳng thức xảy Vậy giá trị lớn biểu thức 0,5đ PHÒNG GD&ĐT HẠ HÒA KỲ THI CHỌN HỌC SINH GIỎI LỚP CẤP HUYỆN NĂM HỌC 2019 - 2020 MÔN: TOÁN Thời gian làm bài 150 phút (Không kể thời gian giao đề) (Đề thi có 03 trang) ĐỀ CHÍNH THỨC I PHẦN TRẮC NGHIỆM KHÁCH QUAN ( 16 Câu; 8,0 điểm) Thí sinh lựa chọn phương án trả lời ghi vào tờ giấy thi Câu Số giá trị để biểu thức A có giá trị nguyên B C Câu Cho D với độ dài ba cạnh tam giác Giá trị biểu thức A B C Câu Tìm tất giá trị để hàm số A B Câu Tìm để điểm A Câu Cho đường thẳng gốc tọa độ C B có phương trình đến đường thẳng A đồng biến D thẳng hàng? D Tìm để khoảng cách từ lớn nhất? B C Câu Điều kiện tham số thỏa mãn C D D để hệ phương trình có nghiệm A B Câu Giá trị nguyên nhỏ mãn điều kiện C D để hệ phương trình có nghiệm thỏa A B Câu Cho phương trình C (với D tham số) Gọi phương trình Giá trị lớn biểu thức A B hai nghiệm C D Câu Tìm để phương trình: có hai nghiệm cạnh góc vng mợt tam giác vng có cạnh huyền ? độ dài hai A B C Câu 10 Cho có cắt Tỷ số diện tích A B Câu 11 Cho B Câu 13 Với Biết chu vi hai tam giác C B A Gọi ; B Câu 15 Cho , từ điểm cách tâm D điểm nằm Thì diện tích C khoảng Qua B C vẽ dây D kẻ hai tiếp tuyến tiếp điểm) Bán kính đường tròn nội tiếp tam giác A D C Câu 14 Cho đường kính vng góc với Biết D góc nhọn Giá trị lớn biểu thức A ( Số đo góc C vng tại Chu vi tam giác A D thỏa mãn B Câu 12 Cho tam giác Đường phân giác góc C , Biết A với D , D Câu 16 Trên đường học về, ba bạn Tốn, Hạ, Hịa phát xe máy vượt đèn đỏ Các công an muốn ba bạn cung cấp thông tin biển số xe, bạn nhớ chi tiết sau: - Bạn Hạ nói: “Đó số có chữ số” - Bạn Hịa nói: “Hai chữ số đầu giống nhau, hai chữ số cuối giống nhau” - Bạn Tốn khẳng định: “Đó số phương” Nhờ thơng tin cơng an tìm xe vi phạm khen ngợi ba bạn học sinh Hai chữ số biển số xe là: A B C II PHẦN TỰ LUẬN: (12điểm) Câu (3,0 điểm) D a) Cho biểu thức: minh chia hết cho b) Cho với P chia hết cho số nguyên Chứng số thoả mãn: Tính: Câu (3,5 điểm) c) Giải phương trình: d) Giải hệ phương trình: Câu (4 điểm) Cho tam giác vuông , đường cao Gọi tâm đường tròn nội tiếp tam giác Gọi giao điểm đường thẳng với cạnh a) Chứng minh: tâm đường tròn ngoại tiếp tam giác b) Chứng minh: Đường tròn ngoại tiếp tam giác có bán kính đường tròn nội tiếp tam giác Câu (1,5 điểm) Cho số dương thỏa mãn: Tìm giá trị lớn biểu thức: -HẾT Họ tên thí sinh .SBD Thí sinh không sử dụng tài liệu Cán coi thi khơng giải thích thêm