Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
726,65 KB
Nội dung
VI CUNG VÀ GĨC LƯỢNG GIÁC CƠNG THỨC LƯỢNG GIÁC C H Ư Ơ N BÀI CUNG VÀ GÓC LƯỢNG GIÁC LÝ THUYẾT I = = I – KHÁI = NIỆM CUNG VÀ GĨC LƯỢNG GIÁC Đường trịn định hướng cung lượng giác I Đường tròn định hướng đường trịn ta chọn + chiều chuyển động gọi chiều dương, chiều ngược lại chiều âm Ta quy ước chọn chiều ngược với chiều quay kim đồng hồ làm chiều dương Trên đường tròn định hướng cho hai điểm A A - B Một điểm M di D động đường trịn ln theo chiều (âm dương) từ A đến B tạo nên cung lượng giác có điểm đầu A điểm cuối B Với hai điểm A, B cho đường trịn định hướng ta có vô số cung lượng giác điểm đầu A, điểm cuối B Mỗi cung kí M O C Ð hiệu AB Góc lượng giác Ð Trên đường tròn định hướng cho cung lượng giác CD Một điểm M chuyển động Ð đường tròn từ C tới D tạo nên cung lượng giác CD nói Khi tia OM quay xung quanh gốc O từ vị trí OC tới vị trí OD Ta nói tia OM tạo góc lượng giác, có tia đầu OC , OC , OD tia cuối OD Kí hiệu góc lượng giác Đường trịn lượng giác Trong mặt phẳng tọa độ Oxy , vẽ đường tròn định hướng tâm O bán kính R 1 Đường trịn cắt hai trục tọa độ bốn điểm + A 1;0 , A ' 1;0 , B 0;1 , B ' 0; 1 Ta lấy A 1; O làm điểm gốc đường trịn Đường trịn xác định gọi đường tròn lượng giác (gốc A ) II – SỐ ĐO CỦA CUNG VÀ GÓC LƯỢNG GIÁC Độ radian a) Đơn vị radian Trên đường trịn tùy ý, cung có độ dài bán kính gọi cung có số đo rad b) Quan hệ độ radian 180 1rad rad 180 c) Độ dài cung trịn Trên đường trịn bán kính R, cung nửa đường trịn có số đo rad có độ dài R Vậy cung có số đo rad đường trịn bán kính R có độ dài: R Số đo cung lượng giác Ð Số đo cung lượng giác AM ( A M ) số thực âm hay dương Ð Ð Kí hiệu số đo cung AM sđ AM Ghi nhớ Số đo cung lượng giác có điểm đầu điểm cuối sai khác bội 2 Ta viết Ð sđ AM k 2 , k số đo cung lượng giác tùy ý có điểm đầu A , điểm cuối M Số đo góc lượng giác OA, OC số đo cung lượng giác tương ứng Số đo góc lượng giác Chú ý Vì cung lượng giác ứng với góc lượng giác ngược lại, đồng thời số đo cung góc lượng giác tương ứng trùng nhau, nên từ sau ta nói cung điều cho góc ngược lại Biểu diễn cung lượng giác đường tròn lượng giác A 1; Chọn điểm gốc làm điểm đầu tất cung lượng giác đường tròn lượng giác Để biểu diễn cung lượng giác có số đo đường tròn lượng giác ta cần chọn điểm Ð cuối M cung Điểm cuối M xác định hệ thức sđ AM II = = = I HỆ THỐNG BÀI TẬP DẠNG 1: ĐỔI ĐƠN VỊ ĐO 180 1 Rad, 1Rad 180 Rad 180 BÀI TẬP TỰ LUẬN = = Câu= Đổi số đo radian cung tròn sang số đo độ I (rad ) 180o (rad ) 60o (rad ) 18o 10 22 (rad ) 1320o 5 (rad ) 100o Câu Đổi số đo độ cung tròn sang radian 17 170o ( rad ) 18 1000o 50 (rad ) 155 3100o ( rad ) 90o (rad ) 240o 4 ( rad ) Câu Trên đồng hồ thời điểm xét kim OG số 3, kim phút OP số 12 Đến kim phút kim gặp lần đầu tiên, tính số đo góc lượng giác mà kim phút quét k 2 Khi kim phút số 12, kim số sđ (OG , OP ) Trong giờ, kim phút quét góc lượng giác 2 , kim quét góc : 2 Thời gian từ lúc 3h đến lúc hai kim trùng lần Kim phút quét góc có số đo 2 6 11 11 6 k 2 Vậy số đo góc lượng giác mà kim phút quét 11 = = = I BÀI TẬP TRẮC N G HIỆM 11 (giờ) Câu 1: [0D6-1.5-1] Góc lượng giác có số đo (rad) góc lượng giác tia đầu tia cuối với có số đo dạng: A k180 (k số nguyên, góc ứng với giá trị k) B k 360 (k số nguyên, góc ứng với giá trị k) C k 2 (k số nguyên, góc ứng với giá trị k) D k (k số nguyên, góc ứng với giá trị k) Lời giải Chọn B Câu 2: [0D6-1.1-1] Kết sau o A 180 1(rad ) B 1( rad ) 1 C 1( rad ) 180 D 1( rad ) 100 Lời giải Chọn B Câu 3: [0D6-1.1-1] Kết sau A (rad ) 360 B (rad ) 180 C (rad ) 1 Lời giải D (rad ) 360 Chọn B Câu 4: [0D6-1.3-1] Trên đường tròn lượng giác, mệnh đề sau A Cung lượng giác có điểm đâu A, điểm cuối B có số đo B Cung lượng giác có điểm đầu A, điểm cuối B có hai số đo cho tổng chúng 2 C Cung lượng giác có điểm đầu A, điểm cuối B có hai số đo 2 k 2 D Cung lượng giác có điểm đầu A, điểm cuối B có vơ số số đo Lời giải Chọn D Câu 5: [0D6-1.3-2] Góc lượng giác lượng giác Ox, Ot k 2 A Ox, Ot 2017 có số đo , số đo tổng quát góc k B Chọn C 3 2017 2016 k 2 2 3 k 2 C Lời giải 3 k D Câu 6: k 2 , k 19; 27 [0D6-1.3-2] Cho góc có giá trị k để A k 2, k 3 B k 3, k 4 C k 4, k 5 Lời giải D k 4, k 5 Chọn B 19 k 2 27 Câu 7: (OA; OB) [0D6-1.3-2] Cho góc lượng giác tia đầu tia cuối trùng với OA, OB 6 B 11 Trong góc lượng giác sau, góc có 31 C 9 D A Lời giải Chọn C 31 6 3.2 5 Câu 8: [0D6-1.1-2] Cho số đo cung Ou, Ov 25 k 360 k với giá trị k Ou, Ov 1055 A k B k 2 C k Lời giải D k 4 Chọn C Ou, Ov 25 k 360 1055 k Câu 9: [0D6-1.1-2] Cho số đo cung (Ou, Ov) A k Ou, Ov 12 k 360 với giá trị k số đo 59 15 B k 2 C k Lời giải D k 4 Chọn B 59 k 2 k 2 15 15 Ou, Ov 12 k 360 Câu 10: [0D6-1.1-2] Nếu số đo góc lượng giác A Chọn C 4 B Ou, Ov 2006 số đo góc hình học uOv 6 C Lời giải 9 D Ou, Ov 2006 6 6 400 uOv 5 Câu 11: [0D6-1.3-2] Chọn khẳng định A Nếu hai góc lượng giác có tia đầu tia cuối chúng có số đo B Nếu hai góc lượng giác có tia đầu tia cuối chúng có số đo (rad) (Ou,Ov) k 2 (O w, Ov) k C Nếu sđ , Ow phân giác góc hình học uOv D Nếu Ou , Ov theo thứ tự tia đối Ou, Ov sđ (Ou , Ov) =sđ (Ou , Ov ) Lời giải Chọn D Câu 12: [0D6-1.3-2] Trong mặt phẳng định hướng cho ba tia Ou, Ov, Ox Xét hệ thức sau: I sđ Ou , Ov sđ Ou , Ox sđ Ox, Ov k 2 , k Z II sđ Ou , Ov sđ Ox, Ov sđ Ox, Ou k 2 , k Z III sđ Ou , Ov sđ Ov, Ox sđ Ox, Ou k 2 , k Z Hệ thức hệ thức Sa- lơ số đo góc: A Chỉ I B Chỉ II C Chỉ III Lời giải D Chỉ I III Chọn A DẠNG 2: XÁC ĐỊNH ĐỘ DÀI CUNG TRỊN Một cung trịn có số đo a (hoặc rad) có độ dài l a R 180 (hoặc l R ) BÀI TẬP TỰ LUẬN = = o Câu= Một đường trịn có bán kính 10 (cm) Tính độ dài cung trịn có số đo 30 I Lời giải 30 30 l R 10 5, 26(cm) 180 180 Độ dài cung trịn có số đo 30 Câu Một bánh xe máy có đường kính (kể lốp xe) 60 (cm) Nếu xe chạy với vận tốc 50(km / h) giây bánh xe quay vòng Lời giải 50.1000 3600 : (0, 6. ) 36,9 Trong phút bánh xe quay được: (vòng) 2 = = = Câu 1: I BÀI TẬP TRẮC N G HIỆM [0D6-1.2-1] Một đường tròn có bán kính 15 cm Tìm độ dài cung trịn có góc tâm 30 là: 5 A 5 B 2 C D Lời giải Chọn A a.R 30.15 5 l 180 180 Câu 2: [0D6-1.2-1] Một đường trịn có bán kính 10 (cm), độ dài cung tròn 40 đường tròn gần A (cm) B (cm) C 11 (cm) Lời giải D 13 (cm) Chọn A a.R 40.10 20 l 7 180 180 Câu 3: 10 R (cm), độ dài cung trịn [0D6-1.2-1] Một đường trịn có bán kính A (cm) B 5 (cm) C (cm) Lời giải D (cm) Chọn A 10 l R 5 Câu 4: [0D6-1.2-2] Chọn khẳng định sai A Cung trịn có bán kính R 5cm có số đo 1,5(rad ) có độ dài 7,5 cm 180 B Cung trịn có bán kính R 8cm có độ dài 8cm thi có số đo độ C Độ dài cung trịn phụ thuộc vào bán kính Ou, Ov có số đo dương góc lượng giác Ou, Ov có số đo âm (S) D Góc lượng giác Lời giải Chọn D Ou, Ov 330 ; Ov, Ou 30 Câu góc lượng giác Câu 5: [0D6-1.2-2] Cho đường trịn có bán kính cm Tìm số đo (rad) cung có độ dài 3cm : 0,5 B A 0,5 C 0,5 Lời giải D Chọn A l R Câu 6: l 0,5 R [0D6-1.2-2] Cung trịn bán kính chữ số thập phân thứ hai) A 32, 46cm 8, 43 cm B 32, 45cm có số đo 3,85 rad có độ dài (làm tròn đến C 32, 47cm Lời giải D 32,5cm Chọn A l R 3,85.8, 43 32, 46 Câu 7: [0D6-1.2-3] Một đồng hồ treo tường, kim dài 10,57cm Trong 30 phút mũi kim vạch lên cung trịn có độ dài (làm trịn đến chữ số thập phân thứ hai) A 2,77cm B 2,78cm C 2,76cm Lời giải D 2,8cm Chọn A 2 0,5 12 Trong 30 phút mũi kim quét góc 12 l R 10,57 2, 77 12 Câu 8: o [0D6-1.3-1] Trên đường tròn lượng giác với điểm gốc A, cung lượng giác có số đo 30 có điểm đầu A, có điểm cuối N? A Có điểm N B Có hai điểm N C Có điểm N D Có vơ số điểm N Lời giải Chọn A Câu 9: [0D6-1.3-2] Trên đường tròn lượng giác gốc A cho cung có số đo: 7 71 13 I II III IV Hỏi cung có điểm cuối trùng nhau? A Chỉ I II B Chỉ I, II III C Chỉ II,III IV Lời giải Chọn D Ta có 7 2 nên cung I II trùng 71 18 9.2 nên cung I IV trùng D Chỉ I, II IV Câu 10: [0D6-1.3-2] Lục giác ABCDEF nội tiếp đường tròn tâm O, điểm A cố định, điểm B, C có tung độ dương Khi số đo lượng giác cung A 120 B 240 OA, OC C 120 240 Lời giải D 120 k 360 Chọn D ABCDEF lục giác AOC 120 Điểm B C có tung độ dương nên lục giác ABCDEF có thứ tự đỉnh ngược chiều kim đồng hồ Vậy số đo lượng giác cung Câu 11: OA, OC 120 k 360 [0D6-1.3-3] Trên đường tròn lượng giác có điểm gốc điểm A, điểm M thuộc đường trịn cho cung lượng giác AM có số đo 45 Điểm N đối xứng với M qua trục Ox, số đo cung AN là? A 45 B 45 315 C 45 k 360 Lời giải D 315 k 360 Chọn D OA, ON ngược chiều Điểm N đổi xứng với M qua trục Ox NOA 45 , cung lượng giác dương nên số đo lượng giác cung Câu 12: OA, ON 45 k 360 315 k 360 [0D6-1.3-3] Trên đường tròn lượng giác có điểm gốc điểm A, điểm M thuộc đường trịn cho cung lượng giác AM có số đo 60 Điểm N đối xứng với M qua trục Oy, số đo cung NA là? A 120 k180 B 120 240 C 240 k 360 Lời giải D 120 k 360 Chọn D OA, ON Điểm N đổi xứng với M qua trục Oy nên AON 180 60 120 , cung lượng giác chiều dương nên số đo lượng giác cung Câu 13: OA, ON 120 k 360 [0D6-1.3-3] Trên đường trịn lượng giác có điểm gốc điểm A, điểm M thuộc đường tròn cho cung lượng giác AM có số đo 75 Điểm N đối xứng với M qua gốc tọa độ, số đo cung AN là? A 105 k 360 B 105 255 C - 255 k 360 D 105 Lời giải Chọn A Điểm N đổi xứng với M qua gốc tọa độ O nên AON 180 75 115 , cung lượng giác OA, ON ngược chiều dương nên số đo lượng giác cung OA, ON 115 k 360 Câu 14: [0D6-1.3-3] Cho hình vuông ABCD tâm O, đường thẳng a qua O trung điểm AB Xác định góc tạo đường thẳng a tia OA A 45 k 300 B 15 k 360 C 135 D 155 Lời giải Chọn D Gọi I trung điểm AB, ta có 45 135 Câu 15: AOI 45 , góc tạo tia OA đường thẳng a [0D6-1.4-1] Một bánh xe có 72 răng, số đo góc mà bánh xe quay di chuyển 10 A 50o o B 60 o o D 70 C 120 Lời giải Chọn A Số đo góc mà bánh xe quay di chuyển 12 Câu 16: 360 10 50 72 [0D6-1.4-2] Sau quãng thời gian kim giây quay góc có số đo là: B 32400 A 12960 C 324000 Lời giải D 64800 Chọn D Trong phút kim giây quay góc: 360 Trong kim giây quay góc: 360.3.60 64800 Câu 17: Sau quãng thời gian kim quay góc A 2 B C Lời giải 3 D Chọn B Sau kim quay góc Sau kim quay góc Câu 18: 2 [0D6-1.4-2] Trên đồng hồ thời điểm xét kim OG số 3, kim phút OP số 12 Lúc sđ OP; OG B k 2 C D k 2 A Lời giải Chọn D POG Ta OP; OG có , OP; OG k 2 ngược chiều dương nên số đo lượng giác cung Câu 19: Trên đồng hồ thời điểm xét kim giây ON số 5, kim phút OP số Lúc sđ ON , OG 12 B k 2 12 C 12 D k 2 12 A Lời giải Chọn D NOG 12 Ta có , cung ON , OG ON , OG ngược chiều dương nên số đo lượng giác cung k 2 12 Câu 20: [0D6-1.4-4]Trên đồng hồ thời điểm xét kim OG số 3, kim phút OP số 12 Đến kim phút kim gặp lần đầu tiên, tính số đo góc lượng giác mà kim quét A k 2 22 B k 22 C Lời giải k 22 D k 2 22 Chọn D k 2 Khi kim phút số 12, kim số sđ (OG, OP) Trong giờ, kim phút quét góc lượng giác 2 , kim quét góc : 2 11 (giờ) Thời gian từ lúc 3h đến lúc hai kim trùng lần Kim quét góc có số đo 11 22 k 2 Vậy số đo góc lượng giác mà kim phút quét 22 Câu 21: AM 3, [0D6-1.3-3] Trên đường tròn định hướng cho ba điểm A, M, N cho số đo cung số đo cung AN Lấy điểm P đường tròn cho tam giác MNP cân P, tìm số đo cung AP 2 k A Chọn A 2 k 2 B k C Lời giải k 2 D 2 MN Xét trường hợp sđ sđ PM sđ MN PM PN sđ PN Tam giác MNP cân P Áp dụng hệ thức Sa P sđ OA, OP sđ OA, OM s đ OM , OP sđ AM sđ M Số đo lượng giác OA, OP 3 ta số đo lượng giác k 2 Vậy Số đo lượng giác Câu 22: lơ: 2 k 2 4 MN Lập lượng tương tự với trường hợp xét sđ OA, OP – 2 OA, OP 2 k [0D6-1.3-3] Trên đường tròn định hướng cho ba điểm A, M, N cho số đo cung 3 số đo cung AN AM 3, Lấy điểm P đường tròn cho tam giác MNP cân N, tìm số đo cung AP 7 k A 7 k 2 B k 2 D k C Lời giải Chọn B 5 MN 12 Ta có sđ Tam giác MNP cân N Áp dụng NM NP sđ NM sđ NP hệ thức Sa 5 12 – 5 7 lơ: N sđ NP 3 sđ OA, OP sđ OA, ON s đ ON , OP sđ A 12 Số đo lượng giác Câu 23: OA, OP 7 k 2 [0D6-1.3-3] Trên đường tròn định hướng cho ba điểm A, M, N cho k cung sđ AN sđ AM , số đo 80 , tìm k để M trùng với N A 15(1 20m), m B 15(1 10m), m C 16(1 10m), m D 16(1 20m), m Lời giải Chọn C Để M trùng với N tồn số nguyên l cho sđ AN sđ AM l 2 k l 2 k 16 160l k 16(1 10m), m 80 Câu 24: [0D6-1.3-3] Trên đường tròn định hướng cho ba điểm A, M, N cho k sđ AN sđ AM 6, 798 , tìm k để M đối xứng với N qua gốc tọa độ A 133(7 12m), m B 133(5 12m), m C 133(7 16m), m D 133(5 12m), m Lời giải Chọn A Để M đối xứng với N tồn số nguyên m cho sđ AN sđ AM 2m 1 k 2m 1 k 133 1596m 798 k 133(7 12 m), m 798 Câu 25: Trên đường tròn định hướng, điểm gốc k 2 AM A Có điểm M thỏa mãn số đo cung A B C Lời giải D Chọn A Trên đường AOM 2 tròn k 2 định hướng 2 k 5 ta có AOM k 2 , mà có giá trị k Vây có vị trí M đường trịn Câu 26: [0D6-1.3-2] Trên đường tròn định hướng, điểm gốc A Có điểm M thỏa mãn số đo k cung AM A B C Lời giải D Chọn B Trên đường trịn định hướng ta có AOM k , mà k AOM 2 2 k 2 có giá trị k Vây có vị trí M đường tròn Câu 27: [0D6-1.3-2] Trên đường tròn định hướng góc A có điểm M thỏa s ẳ AM = 30+ k 45, k ẻ ¢ ? A B C Lời giải D 10 Chọn B Trên đường tròn định hướng ta ÃAOM = 30+ k 45, k ẻ Â , cú mà 22 AOM 360 30 k 45 360 k 3 có giá trị k Vây có vị trí M đường trịn Câu 28: [0D6-1.3-2] Cho hai góc lượng giác có sđ Ox, Ov 135 n360 , n Z Ta có hai tia Ou Ox, Ou 45 m360 , m Z sđ Ov A Tạo với góc 450.B Trùng C Đối D Vng góc Lời giải Chọn C Ta có Câu 29: Ox, Ou Ox, Ov 45 135 180 [0D6-1.3-2] Ox, Ov Cho hai n 2 , n Z góc lượng giác có sđ Ox, Ou m2, m Z sđ Ta có hai tia Ou Ov A Tạo với góc 450.B Trùng C Đối D Vng góc Lời giải Chọn D Ta có Câu 30: Ox, Ou Ox, Ov 4 [0D6-1.3-2] Cho hai góc lượng giác có sđ Ox, Ov 315 n360 , n Z Ta có hai tia Ou A Tạo với góc 450.B Trùng C Đối D Vng góc Lời giải Chọn B Ta có Ox, Ou Ox, Ov 45 315 360 Ox, Ou 45 m360 , m Z Ov sđ Câu 31: [0D6-1.3-2] Cho hai góc lượng giác có sđ Ox, Ov Ox, Ou 5 m 2 , m Z sđ n2 , n Z Khẳng định sau đúng? B Ou Ov đối A Ou Ov trùng C Ou Ov vuông góc D Tạo với góc Lời giải Chọn A Ta có Câu 32: Ox, Ou Ox, Ov 5 2 2 [0D6-1.3-2] Biết góc lượng giác dương nhỏ là: Ou, Ov B 27, 4 A 0, 6 có số đo 137 Ou, Ov có số đo góc C 1, 4 Lời giải D 0, 4 Chọn A Ta có Câu 33: Ou, Ov 137 137 28 0, 6 5 [0D6-1.3-2] Có điểm M đường tròn định hướng gốc A thoả mãn sđ k AM ,k Z 3 ? A B C Lời giải D 12 Chọn A Trên đường AOM 2 tròn k định hướng 2 k 5 ta có AOM k 3 , mà có giá trị k Vây có vị trí M đường trịn Câu 34: m [0D6-1.3-3] Hai góc lượng giác 12 có tia đầu tia cuối m có giá trị A m 4 24k B m 4 14k C m 4 20k Lời giải D m 4 22k Chọn A Để hai góc lượng giác trùng tồn số nguyên m k 2 m 24 k 4 24k 12 k cho Câu 35: [0D6-1.3-3] Cho lục giác A1 A A A A A A1 , ngược chiều kim đồng hồ Số đo cung A 240 k 360 điểm gốc, thứ tự điểm xếp A A B 240 k 360 C 240 k180 Lời giải D 240 k180 Chọn A A OA 240 OA , OA sđ A2 A4 240 k 360 Ta có , ngược chiều kim đồng hồ nên Câu 36: [0D6-1.3-3] Cho góc lượng giác A k 3 12l (Ou, Ov) B k 4 12l k 12 , tìm k để Ou vng góc với Ov C k 3 6l Lời giải D k 4 6l Chọn A k l k 3 12l Để Ou vng góc với Ov tồn số nguyên l cho 12