1. Trang chủ
  2. » Thể loại khác

Giáo án đại số lớp 11 vi phân và đạo hàm cấp cao6

7 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 280,9 KB

Nội dung

ĐẠO HÀM BÀI GIẢNG VI PHÂN VÀ ĐẠO HÀM CẤP CAO Mục tiêu  Kiến thức + Trình bày định nghĩa vi phân + Trình bày phương pháp tính gần nhờ vi phân + Trình bày phương pháp tính đạo hàm cấp 2, cấp 3,…, cấp n  Kĩ + Tính vi phân hàm số f  x  x0 cho trước + Tìm vi phân hàm số f  x  + Biết cách tính gần số dựa vào vi phân + Biết tính đạo hàm cấp 2, cấp 3,…., cấp n + Biết chứng minh đẳng thức, bất đẳng thức, giải phương trình, bất phương trình liên quan đến đạo hàm cấp 2,3   Trang   I LÍ THUYẾT TRỌNG TÂM Vi phân Cho hàm số y  f  x  xác định  a; b  có đạo hàm Nếu chọn hàm số y  x ta có dy  dx  1.x  x x   a; b  Gọi x số gia x Ta gọi tích f   x  x vi phân hàm số y  f  x  x ứng với số gia x Kí hiệu df  x  dy , tức Do ta thường kí hiệu x  dx dy  f   x  dx dy  df  x   f   x  x Ứng dụng vi phân vào phép tính gần Cơng thức tính gần nhờ vi phân f  x0  x   f  x0   f   x0  x Đạo hàm cấp cao + Đạo hàm cấp hai: Cho hàm số f có đạo hàm f  Nếu f  có đạo hàm đạo hàm gọi đạo hàm cấp hai f kí hiệu f  , tức f    f   + Đạo hàm cấp n : Cho hàm số f có đạo hàm cấp n  ( với n  , n  ) f  n 1 Nếu f  n 1 có đạo hàm đạo hàm gọi đạo hàm cấp n f kí hiệu  f   , tức n   f  n   f  n 1 + Ý nghĩa học đạo hàm cấp hai Đạo hàm cấp hai s  t  gia tốc tức thời chuyển động s  s  t  thời điểm t II CÁC DẠNG BÀI TẬP Dạng 1: Tính vi phân Bài tốn Tìm vi phân hàm số Phương pháp giải TOANMATH.com Trang   Ví dụ Cho hàm số y  x3  3x  2x  a)Tính vi phân hàm số điểm x0  ,ứng với số gia x  0, 02 b) Tìm vi phân hàm số a) Tính vi phân hàm số f  x  x0 cho trước: - Tính đạo hàm hàm số x0 - Vi phân hàm số x0 ứng với số gia x df  x0   f   x0  x Hướng dẫn giải a) Ta có y  f   x   x  x  Do vi phân hàm số điểm x0  ,ứng với số gia x  0, 02 df 1  f  1 x   3.12  6.1   0, 02  0,14 b) Tìm vi phân hàm số f  x  b) dy  f   x  x   x  x   dx - Tính đạo hàm hàm số - Vi phân hàm số dy  df  x   f   x  x Ví dụ mẫu Ví dụ Cho hàm số y  x3  x  Tính vi phân hàm số điểm x0  , ứng với số gia x  0, 02 Hướng dẫn giải Ta có y  f   x   x  x Do vi phân hàm số điểm x0  ,ứng với số gia x  0, 02 df 1  f  1 x   3.12  4.1 0, 02  0, 02 Ví dụ Tìm vi phân hàm số y  x x 1 Hướng dẫn giải 2  x2   x2   x  x   x  Ta có y       dy  y dx  dx 2  x 1   x  1  x2  1  x  1 Bài toán Tính gần giá trị hàm số Phương pháp giải Để tính gần giá trị hàm số f  x  49, 25 (lấy Ví dụ Tính gần giá trị điểm x   x0  x  cho trước, ta áp dụng chữ số thập phân kết quả) Hướng dẫn giải công thức f  x0  x   f  x0   f   x0  x Ta có 49, 25  49  0, 25 Xét hàm số f  x   x  f   x   TOANMATH.com x Trang   Chọn x0  49 x  0, 25 , ta có f  x0  x   f  x0   f   x0  x  49  0, 25  49  0, 25   0, 01786 49  7, 01786 Vậy 49  0, 25  7, 01786 Ví dụ mẫu Ví dụ Tính gần 0,9995 Hướng dẫn giải a) Ta có 1  0,9995  0, 0005 Xét hàm số f  x   1  f  x   x x Chọn x0  x  0, 0005 , ta có f  x0  x   f  x0   f   x0  x     0, 0005   1, 0005  0, 0005 Ví dụ Tính gần sin 46 Hướng dẫn giải    Ta có sin 46  sin  45  1   sin     180  Xét hàm số f  x   sin x  f   x   cos x Chọn x0   x   180 , ta có f  x0  x   f  x0   f   x0  x      2   sin       sin  cos 4 180 360  180  Bài tập tự luyện dạng Câu 1: Vi phân hàm số f  x   x  x điểm x  , ứng với x  0,1 A -0,07 B 10 C 1,1 D -0,4 Câu 2: Vi phân hàm số y  x  x biểu thức sau đây? A dy  x  5x C dy   dx 2x  x2  5x dx B dy  D dy  2x  x2  5x dx 2x  x2  5x dx Câu 3: Vi phân hàm số y  x sin x  cos x TOANMATH.com Trang   A dy   2sin x  x cos x  dx B dy  x cos xdx C dy  x cos x D dy   sin x  cos x  dx   3  Câu 4: Dùng công thức vi phân làm tròn đến số thập phân thứ tư tan    kết  80  A 1,2608 B 1,2611 C 1,3391 D 1,3392 Câu 5: Khẳng định sau đúng? A d  sin x    cot x d  cos x  B d  sin x    tan x d  cos x  C d  sin x   cot x d  cos x  D d  sin x   tan x d  cos x  Câu 6: Cho hàm số y  f  x    x  1 Biểu thức sau vi phân hàm số f  x  ? A dy   x  1 dx B dy   x  1 dx C dy   x  1 D dy   x  1 dx Câu 7: Vi phân hàm số y  x3  x  12 x  A dy   x  18 x  12  dx B dy   3 x  18 x  12  dx C dy    3x  18 x  12  dx D dy   3x  18 x  12  dx Câu 8: Vi phân hàm số y   x A dy  C dy  1 x 2x  x2 dx B dy  dx D dy  x  x2  x2  x2 dx dx Câu 9: Vi phân hàm số y  x  A dy  dx 3x  B dy  dx 3x  C dy  dx 3x  D dy  dx 3x  Câu 10: Vi phân hàm số y  A dy   C dy    x  1 dx B dy  dx D dy    x  1 2x  2x 1  x  1 dx  x  1 dx Câu 11: Hàm số y  x sin x  cos x có vi phân A dy   x cos x  sin x  dx B dy   x cos x  dx C dy   cos x  sin x  dx D dy   x sin x  dx TOANMATH.com Trang   Câu 12: Xét hàm số y  f  x    cos 2 x Khẳng định sau đúng? A df  x   C df  x    sin x  cos x cos x C dy   cos x  x  sin x x x cos x  sin x dx  cos 2 x  sin x  cos 2 x dx tan x x x dx x x cos x Câu 14: Cho hàm số y  A dy  D df  x   dx Câu 13: Vi phân hàm số y  A dy  B df  x   dx B dy   dx D dy   sin x  x x cos x dx  x  sin x x x cos x  dx Vi phân hàm số 3x3 dx B dy  dx x4 C dy   dx x4 D dy  x dx Dạng 2: Đạo hàm cấp cao Bài tốn Tính đạo hàm đến cấp n hàm số Phương pháp giải + Áp dụng trực tiếp cơng thức để tính đạo hàm cấp Ví dụ Tìm đạo hàm cấp hàm số y  cos x hai y   y  Tính y  x0  Hướng dẫn giải + Cấp 3,4… ta tính tương tự Ta có y  cos x  1  cos x   y   sin x  y  2 cos x  y  4sin x Ví dụ mẫu Ví dụ Tìm đạo hàm cấp hàm số y  3x  x2 Hướng dẫn giải Ta có y   x  2 2  7  x       14  y   x  2  x  2   14  x    42  x    42  4      168  y   y   x  2  x  2  x  2  x  2 Ví dụ Tìm đạo hàm cấp hàm số y  sin 2 x Hướng dẫn giải TOANMATH.com Trang   Ta có y  sin 2 x  1  cos x   y  2sin x  y  8cos x  y  32sin x  y  4  128cos x  y 5  512sin x Bài toán Tính đạo hàm cấp cao hàm số Phương pháp giải Ví dụ Tìm đạo hàm cấp hàm số y  sin x  n  *  Hướng dẫn giải   Bước 1: Tính y, y, y Dựa vào đạo hàm Ta có: y  cos x  sin  x   ;   vừa tính, dự đốn cơng thức tính y  n    y   sin x  sin  x   ; 2    Dự đoán: y  n   sin  x  n  , n  * 1 2  Bước 2: Chứng minh cơng thức vừa dự đốn Chứng minh 1 quy nạp: phương pháp quy nạp  n  : 1 Hiển nhiên  Giả sử 1 với n  k  nghĩa   y k  sin  x  k  2  Ta phải chứng minh 1 với n  k  nghĩa ta phải chứng minh   y  k 1  sin  x   k  1    2  Thật vậy, xét   ta có '        VT  y k 1   y k   sin  x  k    cos  x  k   2       sin  x   k  1   VP 2  Suy   đúng,nghĩa 1 với n  k  Theo ngun lí quy nạp ta có công thức   y n  sin  x  n  , n  * 2  TOANMATH.com Trang ... x Đạo hàm cấp cao + Đạo hàm cấp hai: Cho hàm số f có đạo hàm f  Nếu f  có đạo hàm đạo hàm gọi đạo hàm cấp hai f kí hiệu f  , tức f    f   + Đạo hàm cấp n : Cho hàm số f có đạo hàm. .. Tính vi phân Bài tốn Tìm vi phân hàm số Phương pháp giải TOANMATH.com Trang   Ví dụ Cho hàm số y  x3  3x  2x  a)Tính vi phân hàm số điểm x0  ,ứng với số gia x  0, 02 b) Tìm vi phân hàm số. .. Tính vi phân hàm số f  x  x0 cho trước: - Tính đạo hàm hàm số x0 - Vi phân hàm số x0 ứng với số gia x df  x0   f   x0  x Hướng dẫn giải a) Ta có y  f   x   x  x  Do vi phân hàm

Ngày đăng: 07/12/2022, 15:08