Untitled BÀI GIẢNG GIỚI HẠN CỦA HÀM SỐ A LÝ THUYẾT I ĐỊNH NGHĨA GIỚI HẠN CỦA HÀM SỐ TẠI MỘT ĐIỂM 1 Giới hạn hữu hạn tại một điểm Định nghĩa 1 Cho ( );a b là một khoảng chứa điểm 0x và hàm số ( )y f x=[.]
BÀI GIẢNG GIỚI HẠN CỦA HÀM SỐ A LÝ THUYẾT I ĐỊNH NGHĨA GIỚI HẠN CỦA HÀM SỐ TẠI MỘT ĐIỂM Giới hạn hữu hạn điểm Định nghĩa 1: Cho ( a; b ) khoảng chứa điểm x0 hàm số y = f ( x ) xác định ( a; b ) f ( x ) = L với dãy số xn mà ( a; b ) \ x0 xlim →x xn ( a; b ) \ x0 , xn → x0 ta có lim f ( xn ) = L Nhận xét: - Giới hạn hàm số định nghĩa thông qua khái niệm giới hạn dãy số - Hàm số không thiết phải xác định x0 Định nghĩa (Giới hạn bên): Cho hàm số y = f ( x ) xác định khoảng ( x0 ; b ) lim+ f ( x ) = L với dãy số xn mà x → x0 x0 xn b, xn → x0 ta có lim f ( xn ) = L Cho hàm số y = f ( x ) xác định khoảng ( a; x0 ) lim− f ( x ) = L với dãy số xn mà x → x0 a xn x0 , xn → x0 ta có lim f ( xn ) = L STUDY TIP x → x0+ nghĩa x → x0 x x0 x → x0− nghĩa x → x0 x x0 Định lí lim f ( x ) = L lim− f ( x ) = lim+ f ( x ) = L x → x0 x → x0 x → x0 Giới hạn vô cực điểm Định nghĩa Cho ( a; b ) khoảng chứa điểm x0 hàm số y = f ( x ) xác định ( a; b ) f ( x ) = + ( a; b ) \ x0 xlim →x với dãy số xn mà xn ( a; b ) \ x0 , xn → x0 ta có f ( xn ) = + Lưu ý: Các định nghĩa lim f ( x ) = −; lim+ f ( x ) = +; lim+ f ( x ) = −; lim− f ( x ) = +; lim− f ( x ) = − x → x0 x → x0 x → x0 phát biểu hoàn toàn tương tự Lưu ý: a) f ( x ) không thiết phải xác định điểm x0 x → x0 x → x0 b) Ta xét giới hạn f ( x ) điểm x0 có khoảng ( a; b ) (dù nhỏ) chứa x0 mà f ( x ) xác định ( a; b ) ( a; b ) \ x0 Chẳng hạn, hàm số f ( x ) = x có tập xác định D = 0; + ) Do ta khơng xét giới hạn hàm số điểm x0 = , khơng có khoảng ( a; b ) chứa điểm mà f ( x ) xác định Tương tự ta không xét giới hạn f ( x ) điểm x0 c) Ta xét giới hạn bên phải f ( x ) điểm x0 có khoảng ( x0 ; b ) (khoảng nằm bên phải x0 ) mà f ( x ) xác định Tương tự, ta xét giới hạn bên trái f ( x ) điểm x0 có khoảng ( a; x0 ) (khoảng nằm bên trái x0 ) mà f ( x ) xác định Chẳng hạn, với hàm số f ( x ) = x − , điểm x0 = , ta xét giới hạn bên phải Với hàm số g ( x ) = − x , điểm x0 = , ta xét giới hạn bên trái d) lim f ( x) = + lim− f ( x) = lim+ f ( x) = + x →xo x →x x →x o o lim f ( x) = − lim− f ( x) = lim+ f ( x) = − x →xo x →x o x →x o II ĐỊNH NGHĨA GIỚI HẠN CỦA HÀM SỐ TẠI VÔ CỰC Giới hạn hữu hạn vô cực Định nghĩa Cho hàm số y = f ( x ) xác định khoảng ( a; + ) lim f ( x ) = L với dãy số ( xn ) x →+ , xn a xn → + ta có lim f ( x ) = L LƯU Ý: Định nghĩa lim f ( x ) = L phát biểu hoàn toàn tương tự x →− Giới hạn vô cực vô cực Định nghĩa Cho hàm số y = f ( x ) xác định khoảng ( a; + ) lim f ( x ) = + với dãy số (x ), x n n x →+ a xn → + ta có lim f ( x ) = + LƯU Ý: Các định nghĩa: lim f ( x ) = +, lim f ( x ) = −, lim f ( x ) = − phát biểu hoàn toàn tương x →− x →+ tự III MỘT SỐ GIỚI HẠN ĐẶC BIỆT a) lim x = xo x → xo b) lim c = c; lim c = c ( c số ) x → xo x → c = ( c số, k nguyên dương ) x → x k c) lim x →− d) lim x k = + với k nguyên dương; lim x k = − k số nguyên lẻ; lim x k = + x →− x →+ x →− k số nguyên chẵn Nhận xét: lim f ( x ) = + lim − f ( x ) = − x →+ x →+ IV ĐỊNH LÍ VỀ GIỚI HẠN HỮU HẠN Định lí Giả sử lim f ( x ) = L lim g( x ) = M Khi x → xo x → xo a) lim f ( x) g( x) = L M x →xo b) lim f ( x)g( x) = LM ; lim cf ( x) = cL với c x →xo x →xo f ( x) L = ( M 0) g( x ) M c) lim x → xo STUDY TIP: Giới hạn hữu hạn, giới hạn tổng, hiệu, tích, thương hai hàm số điểm tổng, hiệu, tích, thương giới hạn chúng điểm (trong trường hợp thương, giới hạn mẫu phải khác khơng) Định lí Giả sử lim f ( x ) = L Khi x → xo a) lim f ( x ) = L x → xo b) lim f ( x ) = L x → xo c) Nếu f ( x ) với J \ xo , J khoảng chứa xo , L lim x → xo f ( x) = L LƯU Ý: Định lí định lí thay x → xo x → x − o , x → x + o V QUY TẮC VỀ GIỚI HẠN VƠ CỰC Các định lí quy tắc áp dụng cho trường hợp: x → xo , x → x −o , x → x +o , x → + x →− Tuyên nhiên, gọn, ta phát biểu cho trường hợp x → xo Quy tắc (Quy tắc tìm giới hạn tích) L = lim f ( x ) x → xo lim g( x ) x → xo L0 + L0 + STUDY TIP: Giới hạn tích hai hàm số − − lim f ( x)g( x) x →xo + − − + - Tích hàm số có giới hạn hữu hạn khác với hàm số có giới hạn vơ cực hàm số có giới hạn vô cực - Dấu giới hạn theo quy tắc dấu phép nhân hai số Quy tắc (Quy tắc tìm giới hạn thương) L = lim f ( x ) x → xo L L0 lim g( x ) x → xo Dấu g( x ) lim x → xo Tùy ý + + L0 (Dấu g ( x ) xét khoảng K tính giới hạn, với x xo ) f ( x) g( x ) + − − + STUDY TIP: Giới hạn thương hai hàm số Tử thức có giới hạn hữu hạn khác 0: - Mẫu thức tang (dần đến vơ cực) phân thức nhỏ (dần đến 0) - Mẫu thức nhỏ (dần đến 0) phân thức có giá trị tuyệt đối lớn (dần đến vô cực) - Dấu giới hạn theo quy tắc dấu phép chia hai số VI CÁC DẠNG VÔ ĐỊNH: GỒM , ,0. VÀ − B CÁC DẠNG TOÁN VỀ GIỚI HẠN HÀM SỐ DẠNG 1: TÌM GIỚI HẠN XÁC ĐỊNH BẰNG CÁCH SỬ DỤNG TRỰC TIẾP CÁC ĐỊNH NGHĨA, ĐỊNH LÍ VÀ QUY TẮC Phương pháp: - Xác định dạng toán: giới hạn điểm hay giới hạn vô cực? giới hạn xác định hay vô định? - với giới hạn hàm số điểm ta cần lưu ý: Cho f ( x ) hàm số sơ cấp xác định khoảng ( a; b ) chứa điểm x0 Khi đó, lim f ( x ) = f ( xo ) x → xo - Với giới hạn hàm số vô cực ta “xử lí” tương tự giới hạn dãy số - Với giới hạn xác định, ta áp dụng trực tiếp định nghĩa giới hạn hàm số, định lí giới hạn hữu hạn quy tắc giới hạn vô cực STUDY TIP: Dùng định nghĩa chứng minh hàm số y = f ( x) giới hạn x → x0 - Chọn hai dãy số khác ( an ) ( bn ) thỏa mãn an bn thuộc tập xác định hàm số y = f ( x) khác x0 ; an → x0 ; bn → x0 - Chứng minh lim f ( an ) lim f ( bn ) chứng minh hai giới hạn không tồn f ( x ) không tồn TH x → x0 x → chứng minh tương tự - Từ suy xlim →x o Ví dụ 1: Chọn khẳng định khẳng định sau: C lim sin x = B lim sin x = −1 A lim sin x = x →+ x →+ x →+ D lim sin x không tồn x →+ Đáp án D Lời giải Xét dãy số ( xn ) với xn = + 2n Ta có xn → + limsin xn = limsin + 2n = 2 Lại xét dãy số ( yn ) với yn = − (1) + 2n Ta có yn → + limsin yn = limsin − + 2n = −1 ( 2) Từ (1) ( 2) suy lim sin x không tồn Vậy chọn đáp án D x →+ Ví dụ 2: Cho hàm số f ( x) = x2 + , lim f ( x) bằng: x →3 x A + B C D STUDY TIP: Giới hạn điểm Nếu f ( x ) xác định x0 tồn khoảng ( a; b ) thuộc tập xác định f ( x ) chứa x0 lim f ( x ) = f ( xo ) x → xo - Việc sử dụng hay khơng sử dụng MTCT để tính f ( xo ) tùy thuộc vào mức độ phức tạp f ( xo ) khả tính toán độc giả Đáp án C Lời giải Hàm số cho xác định ( 0;+ ) Cách (sử dụng định nghĩa): Giải sử ( xn ) dãy số bất kỳ, thỏa mãn xn 0, xn xn → n → + Ta có xn2 + 32 + lim f ( xn ) = lim = = ( áp dụng quy tắc giới hạn hữu hạn dãy số) Do xn lim f ( x) = x →3 Cách (sử dụng định lí giới hạn hữu hạn): Theo định lí ta có: x + lim1 lim x.lim x + lim1 3.3 + ( x2 + 1) lim x + lim x →3 x →3 x →3 x →3 lim f ( x ) = lim = = = x→3 x→3 = = x →3 x →3 x lim 2.lim x lim lim x lim x x →3 x →3 x →2 x →3 x →3 ( ) Tuy nhiên thực hành, câu hỏi trắc nghiệm nên ta làm sau Cách 3: Vì f ( x ) hàm số sơ cấp xác định lim f ( x ) = f ( 3) = x →3 ( 0;+ ) chứa điểm x0 = nên 10 = 3 Do sử dụng MTCT ta làm cách Cách 4: Nhập biểu thức vào hình Bấm phím CALC, máy hỏi X ? nhập = Máy hiển thị kết hình: Do chọn đáp án C Ví dụ 3: Chọn khẳng định khẳng định ? x+2 = x−2 A lim x+2 =1 x−2 B lim C lim x+2 = −1 x−2 D Hàm số f ( x ) = x →3 x →3 x →3 x+2 khơng có giới hạn x → x−2 Đáp án B Lời giải Hàm số f ( x ) = x+2 xác định khoảng ( −;2) ( 2;+ ) Ta có ( 2; + ) x−2 Cách : lim f ( x ) = f ( 3) = x →3 3+ = 3− x+2 hình MTCT Bấm phím CALC , máy x−2 hỏi X? nhâp = Máy hiển thị kết hình: Cách : Nhập biểu thức hàm số f ( x ) = Vậy lim x →3 Ví dụ 4: x+2 = x−2 lim ( −2 x + x ) bằng: x →− A −2 C + B D − Đáp án C Lời giải Cách 1: Sử dụng MTCT tính giá trị f ( x ) = −2x3 + 5x điểm có giá trị âm nhỏ (do ta xét giới hạn hàm số x →− ), chẳng hạn −1020 Máy hiển thị kết hình: Đó giá trị dương lớn Vậy chọn đáp án C , tức lim ( −2 x3 + x ) = + x →− 5 Cách 2: Ta có −2 x3 + 5x = x3 −2 + x 5 5 Vì lim x3 = − lim −2 + = −2 nên lim x3 −2 + = + x →− x →− x →− x x 5 Vậy theo Quy tắc 1, lim −2 x3 + 5x = lim x3 −2 + = + Do chọn C x →− x →− x ( ) Lưu ý 1: 5 - Để hiểu lim x3 = − lim −2 + = −2 xin xem lại phần giới hạn đặc biệt x →− x →− x - Bài tốn thuộc dạng tính giới hạn hàm số x dần tới vô cực, x →− Do khơng thể áp dụng kết biết giới hạn dãy số, giới hạn dãy số xét n → + Ta áp dụng kĩ thuật biết giới hạn dãy số Lưu ý 2: Có thể dễ dàng chứng minh kết sau : Cho hàm số f ( x ) = ak xk + ak −1xk −1 + + a1x + a0 (ak 0) đa thức bậc k x x → + k ak Giới hạn f ( x ) ak + ak − ak + ak − ak − Tùy ý k chẵn x →− k lẻ ak + a a a Thật vậy, ta có f ( x ) = x k ak + k −1 + + k1−1 + 0k x x x a a a Vì lim ak + k −1 + + k1−1 + 0k = ak lim x k = + với k tùy ý, lim x k = + k chẵn, x →+ x →− x → x x x lim x k = − k lẻ nên ta dễ dàng suy bảng kết x →− Ví dụ 5: lim ( 3x − x + 1) bằng: x →− A + B − C D Đáp án A Lời giải Cách 1: Theo nhận xét lim ( 3x − x + 1) = + ( x → −, k chẵn ak ) Thật x →− vậy, ta có 3x − x + = x − + x x 1 Vì lim x = + lim − + = nên lim ( 3x − x + 1) = + x →− x →− x → x x STUDY TIP - Giới hạn vô cực hàm đa thức vô cực, phụ thuộc vào số hạng chứa lũy thừa bậc cao - Giới hạn hàm đa thức + phụ thuộc vào hệ số lũy thừa bậc cao (Giống với giới hạn dãy số dạng đa thức) - Giới hạn hàm đa thức − phụ thuộc vào bậc hệ số lũy thừa bậc cao Cách 2: Sử dụng MTCT tính giá trị hàm số f ( x ) = 3x4 − x2 + x = −1020 , ta kết hình : Kết số dương lớn Do chọn đáp án A, Ví dụ 6: Cho hàm số f ( x ) = x − x + Khẳng định ? A lim f ( x ) = − B lim f ( x ) = + C lim f ( x ) = D lim f ( x ) không tồn x →− x →− x →− x →− Đáp án B Lời giải Hàm số f ( x ) = x − x + xác định Có thể giải nhanh sau : Vì x − x + hàm đa thức x nên có giới hạn vơ cực Mà x2 − x + với x nên giới hạn f ( x ) = x − x + − chắn + Thật vậy, ta có x − x + = x 1 − + = x − + x x x x Vì lim x = + lim − + = nên lim x2 − x + = + x →− x →− x →− x x Hoặc ta sử dụng MTCT để tính giá trị f ( x ) giá trị âm nhỏ x , chẳng hạn x = −1020 ta kết hình: Kết số dương lớn Do ta chọn đáp án B (Dễ thâý kết hiển thị máy tính kết gần khả tính tốn hạn chế MTCT Tuy nhiên kết giúp ta lựa chọn đáp án xác) STUDY TIP Ta có lim x = + x → Khi x →− x Với x ta có x2 = − x Cần đặc biệt lưu ý điều tính giới hạn − hàm chứa thức Ví dụ 7: Giới hạn hàm số f ( x ) = x − x − x + x →− bằng: A − B + C −1 Đáp án A Lời giải Cách 1: Ta có: 1 1 x − x − x + = x 1 − − x + = x − − x + x x x x 1 = x − − + x x 1 Mà lim x = + lim − − + x →− x → x x = − = −1 D Vậy lim x →− ( 1 x − x − x + = lim x − − + x →− x x ) = − Lưu ý: - Độc giả nên đọc lại phần giới hạn dãy số có chứa thức để hiểu lại có định hướng giải (mà khơng nhân chia với biểu thức liên hợp) - Có thể thấy sau: Vì lim x2 − x = +; lim x2 + = + x→− x→− Mà hệ số x x + lớn hệ số x x − x nên suy lim x →− ( ) x − x − x + = − Cách 2: Sử dụng MTCT tính giá trị hàm số x = −1010 ta kết hình Vậy chọn đáp án A Ví dụ 8: 2017 bằng: x →+ x − x lim A 2017 B − C + D Đáp án D Lời giải Cách 1: Vì lim ( x3 − x5 ) = − nên theo quy tắc 2, lim x →+ x →+ 2017 =0 3x3 − x5 Cách 2: Sử dụng MTCT tính giá trị hàm số x = 1010 ta kết hình Đó kết gần Do chọn đáp án D STUDY TIP Khi hàm số khơng xác định x0 ta thử áp dụng quy tắc giới hạn vơ cực Đó quy tắc áp dụng cho dạng L. ; - Dạng L : giới hạn L L ; Lưu ý cách xác định dấu giới hạn ... STUDY TIP: Giới hạn tích hai hàm số − − lim f ( x)g( x) x →xo + − − + - Tích hàm số có giới hạn hữu hạn khác với hàm số có giới hạn vơ cực hàm số có giới hạn vơ cực - Dấu giới hạn theo... → xo - Với giới hạn hàm số vô cực ta “xử lí” tương tự giới hạn dãy số - Với giới hạn xác định, ta áp dụng trực tiếp định nghĩa giới hạn hàm số, định lí giới hạn hữu hạn quy tắc giới hạn vô cực... TẮC Phương pháp: - Xác định dạng toán: giới hạn điểm hay giới hạn vô cực? giới hạn xác định hay vô định? - với giới hạn hàm số điểm ta cần lưu ý: Cho f ( x ) hàm số sơ cấp xác định khoảng ( a; b