TÍNH CHẤT BA ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC A Phương pháp giải Điểm nằm đường trung trực đoạn thẳng cách hai mút đoạn thẳng Đảo lại, điểm cách hai mút đoạn thẳng nằm đường trung trực tam giác Ba đường trung trực tam giác qua điểm Điểm cách ba đỉnh tam giác tâm đường tròn qua ba đỉnh tam giác (ta gọi đường tròn ngoại tiếp tam giác) Nếu tam giác có đường trung tuyến đồng thời đường trung trực ứng với cạnh tam giác tam giác cân B Bài tập Bài 1: Cho C D thuộc đường trung trực đoạn thẳng AB Chứng minh: DCA DCB Bài 2: Cho tam giác ABC vng A có AB AC có đường cao AH Kéo dài AH thêm đoạn HD HA Chứng minh: tam giác BCD vuông D Bài 3: Cho ba điểm không thẳng hàng Đường trung trực AB AC cắt O Chứng minh: OB OC Bài 4: Cho tam giác ABC cân A tam giác DBC cân D M trung điểm BC Chứng minh: A, M, D thẳng hàng Bài 5: Cho tam giác ABC cân A M trung điểm BC Đường trung trực AB AC cắt D Chứng minh: a) DB DC b) A, D, M thẳng hàng Bài 6: Cho tam giác ABC cân A Hai tia phân giác góc B góc C cắt I a) Chứng minh: tam giác BIC cân I b) Chứng minh: AI đường trung trực BC Bài 7: Cho tam giác ABC cân A, kẻ Bx BA, Cy CA Bx Cy cắt D Chứng minh: ADB ADC AD BC Bài 8: Cho tam giác ABC có AB AC Lấy D cạnh AC cho CD AB Đường trung trực BD cắt đường trung trực AC M a) So sánh MAB MCD b) MAC tam giác gì? Chứng minh: AM tia phân giác góc BAC Bài 9: Cho tam giác ABC có AB AC Đường trung trực BC cắt tia phân giác góc BAC M Gọi H K hình chiếu vng góc M xuống hai tia AB AC tương ứng So sánh MBH MCK Bài 10: Cho tam giác ABC nhọn có AH đường cao Vẽ HD AB D, HE AC E Kéo dài HD thêm đoạn DI DH, kéo dài HE thêm đoạn EK EH a) AB AC đoạn IH HK? Chứng minh: AIK cân A b) IK cắt AB AC G M Chứng minh: AGH AGI; AMH AMK c) Chứng minh: HA tia phân giác góc GHM Bài 11: Cho d đường trung trực đoạn thẳng AC Lấy B cho A B bên đường thẳng d BC cắt d I Điểm M di động d a) So sánh MA MB với BC b) Tìm vị trí M d để MA MB nhỏ Bài 12: Cho tam giác ABC có đường cao BE CF cắt H Gọi M, N, P trung điểm BC, EF, AH Chứng minh: M, N, P thẳng hàng Bài 13: Cho tam giác ABC có đường phân giác AD Từ điểm P thuộc DC, ta kẻ đường thẳng song song với AD cắt AC M cắt tia đối tia AB N Chứng minh: đường trung trực đoạn MN qua đỉnh A tam giác ABC Bài 14: Cho tam giác ABC, lấy D thuộc tia đối tia BA E thuộc tia đối tia AC cho CE BD Gọi M, N, P, Q trung điểm BC, DE, BE, CD a) Chứng minh: tam giác PMQ cân b) Chứng minh: MN PQ c) Gọi Ax tia phân giác góc BAC Chứng minh: Ax / /MN Bài 15: Cho tam giác ABC cân A, đường trung trực AC cắt tia CB D nằm đoạn thẳng BC Trên tia đối tia AD lấy E cho AE BD Chứng minh: AD CE ... đường trung trực đoạn MN qua đỉnh A tam giác ABC Bài 14: Cho tam giác ABC, lấy D thuộc tia đối tia BA E thuộc tia đối tia AC cho CE BD Gọi M, N, P, Q trung điểm BC, DE, BE, CD a) Chứng minh: tam. .. AC M a) So sánh MAB MCD b) MAC tam giác gì? Chứng minh: AM tia phân giác góc BAC Bài 9: Cho tam giác ABC có AB AC Đường trung trực BC cắt tia phân giác góc BAC M Gọi H K hình chiếu vng góc...Bài 7: Cho tam giác ABC cân A, kẻ Bx BA, Cy CA Bx Cy cắt D Chứng minh: ADB ADC AD BC Bài 8: Cho tam giác ABC có AB AC Lấy D cạnh AC cho CD AB Đường trung trực BD cắt đường trung trực