Qui trình lưu trữ khí metan bằng CNT dạng hạt

Một phần của tài liệu Nghiên cứu tổng hợp, đặc trưng và một số ứng dụng của vật liệu cacbon nano ống bằng phương pháp xúc tác lắng đọng hóa học pha hơi khí dầu mỏ hóa lỏng (LPG) Việt Nam (Trang 68 - 154)

Đánh giá khả năng lưu trữ khí metan trên vật liệu CNT được thực hiện với trên hệ thống thiết bị với sơ đồ nguyên lý và bình lưu trữ khí được trình bày trên hình 2-9.

Hình 2-9 Sơ đồ nguyên lý quá trình lưu trữ khí metan của vật liệu CNT

Bình đo được chế tạo bằng vật liệu thép không gỉ, không gian chứa khí có đường kính trong là 30 mm, chiều dày 10mm và chiều cao 50mm với thể tích chứa tương ứng là 35,34 cm3. Trên nắp bình được lắp 2 van cho máy hút chân không và van nạp khí. Hệ thống này cho phép thực hiện quá trình hút chân không bình đến áp suất 2Pa trước khi thực hiện quá trình lưu trữ khí nhằm loại bỏ các ảnh hưởng của các khí hấp phụ trên bề mặt vật liệu và độ ẩm. Sau đó, bằng cách chuyển các van trên đường ống, khí metan chuyển từ bình chứa đến bình lưu trữ có chứa CNT. Nhiệt độ và áp suất của quá trình lưu trữ được giữ cố định ở 25°C và 35bar. Bằng cách này, tổng khối lượng khí metan thoát ra từ bình lưu trữ sẽ được cân đo , sau đó tính toán khả năng lưu trữ của CNT đối với metan.

Quá trình đo khả năng lưu trữ khí metan được thực hiện như sau:

- Bước 1: cân bình lưu trữ (bình trống) sau khi hút chân không, ta có khối lượng (m1);

- Bước 2: đổ đầy CNT đã được tạo hạt (sấy ở 100°C trong vòng 3 giờ) vào bình, đóng nắp và hút chân không từ 10 – 15 phút, cân lại ta có khối lượng của bình đo và CNT (m2).

Bình lưu trữ Bơm hút

chân không

Bình CH4

- Bước 3: bình đo được lắp vào hệ thống để nạp khí metan ở áp suất 35 bar cho đến khi khối lượng không đổi (khoảng 30 phút). Đem cân ta có khối lượng của bình đo, CNT và lượng metan bị hấp phụ (m3).

- Bước 4: Giải hấp khí metan từ bình đo, quá trình giải hấp diễn ra khoảng 1 phút. Khối lượng tổng của bình đo sau khi giải hấp (m4), lượng khí metan bị hấp phụ trên vật liệu CNT được giải hấp là (m3 – m4). Quá trình đo được thực hiện 3 lần trên mỗi mẫu để giảm sai số của quá trình. Khả năng lưu trữ của CNT được đánh giá dựa trên lượng khí metan thoát ra trong điều kiện giải hấp.

Một khái niệm nữa được sử dụng trong việc đánh giá khả năng lưu trữ khí của vật liệu là hệ số lưu trữ (Storage Factor - SF). Hệ số này được xác định dựa vào khối lượng của metan bị hấp phụ m = (m3 – m4), giá trị m được hiệu chỉnh với thể tích không lưu trữ là vùng thể tích không chứa vật liệu hấp phụ (mcor). Hệ số lưu trữ được xác định bằng tỷ số khối lượng hiệu chỉnh (mcor) trên khối lượng của metan lưu trữ ở điều kiện thường trong trường hợp không chứa chất hấp phụ (mSTP).

Trong điều kiện thí nghiệm các thông số vật lý có liên quan đến hệ thống nghiên cứu quá trình lưu trữ khí metan được trình bày tại bảng 2-2 [4].

Bảng 2-2 Các thông số vật lý quá trình lưu trữ khí metan

Áp suất hấp phụ (atm) 35

Nhiệt độ hấp phụ (°C) 25

Thể tích chứa CNT - VS (cm3) 35,34

Thể tích tổng của thiết bị - VT (cm3) 39,59

Thể tích không lưu trữ - VNS (cm3) 4,25

Khối lượng của CH4 trong VNS ở điều kiện hấp phụ - mNS (g) 0,102 Khối lượng của CH4 trong VS ở điều kiện thường - mSTP (g) 0,023

2.2 Các phƣơng pháp nghiên cứu

2.2.1 Phương pháp nhiễu xạ tia X (X-ray)

- Nguyên lý chung:

Nhiễu xạ tia X là hiện tượng các chùm tia X nhiễu xạ trên các mặt tinh thể của chất rắn do tính tuần hoàn của cấu trúc tinh thể tạo nên các cực đại và cực tiểu nhiễu xạ. Kỹ thuật nhiễu xạ tia X (thường viết gọn là nhiễu xạ tia X) được sử dụng để phân tích cấu trúc chất

rắn, vật liệu... Xét về bản chất vật lý, nhiễu xạ tia X cũng gần giống với nhiễu xạ điện tử, sự khác nhau trong tính chất phổ nhiễu xạ là do sự khác nhau về tương tác giữa tia X với nguyên tử và sự tương tác giữa điện tử và nguyên tử.

Xét một chùm tia X có bước sóng λ chiếu tới một tinh thể chất rắn dưới góc tới θ. Do tinh thể có tính chất tuần hoàn về cấu trúc, các mặt tinh thể sẽ cách nhau những khoảng đều đặn d, đóng vai trò giống như các cách tử nhiễu xạ và tạo ra hiện tượng nhiễu xạ của các tia X. Nếu ta quan sát các chùm tia tán xạ theo phương phản xạ (bằng góc tới) thì hiệu quang trình giữa các tia tán xạ trên các mặt là:

ΔL = 2.d.sinθ

Như vậy, để có cực đại nhiễu xạ thì góc tới phải thỏa mãn điều kiện:

ΔL = 2.d.sinθ = n.λ (2.1)

trong đó: λ: là bước sóng của chùm tia Rơnghen;

d: là khoảng cách giữa 2 mặt phẳng song song; θ: là góc phản xạ;

Đây là định luật Vulf-Bragg mô tả hiện tượng nhiễu xạ tia X trên các mặt tinh thể. Căn cứ vào cực đại nhiễu xạ trên giản đồ (giá trị 2θ) có thể suy ra d theo công thức (2.1). So sánh giá trị d vừa tìm được với giá trị d chuẩn sẽ xác định được cấu trúc mạng tinh thể của chất cần nghiên cứu [5].

- Ứng dụng:

Phương pháp này được sử dụng rộng rãi để nghiên cứu cấu trúc mạng tinh thể bằng cách chiếu một chùm tia X song song hẹp, đơn sắc vào mẫu. Người ta sẽ quay mẫu và quay đầu thu chùm nhiễu xạ trên đường tròn đồng tâm, ghi lại cường độ chùm tia phản xạ và ghi phổ nhiễu xạ bậc 1 (n = 1).

Phổ nhiễu xạ sẽ là sự phụ thuộc của cường độ nhiễu xạ vào 2 lần góc nhiễu xạ (2θ). Đối với vật liệu vi mao quản, do kích thước vi mao quản nhỏ (d<20A0) nên góc quét 2θ thường lớn hơn 5 độ. Đối với vật liệu mao quản trung bình (d>20Ao) góc quét 2θ thường nhỏ hơn 5 độ.

Phương pháp nhiễu xạ tia X cho phép xác định thành phần pha, tỷ phần pha, cấu trúc tinh thể. Các mẫu đo nhiễu xạ tia X trong luận án được thực hiện trên máy Bruker D8 Advance X-Ray Diffractometer – Đức.

2.2.2 Phổ tán sắc năng lượng tia X (EDX)

Phổ tán sắc năng lượng tia X là kỹ thuật phân tích thành phần hóa học của vật rắn dựa vào việc ghi lại phổ tia X phát ra từ vật rắn do tương tác với các bức xạ.

- Nguyên lý chung: Kỹ thuật EDX chủ yếu được thực hiện trong các hiển vi điện tử SEM, ở đó ảnh vi cấu trúc vật rắn được ghi lại thông qua việc

sử dụng chùm điện tử có năng lượng cao tương tác với vật rắn. Khi chùm điện tử có năng lượng lớn được chiếu vào vật rắn, nó sẽ đâm xuyên sâu vào nguyên tử vật rắn và tương tác với các lớp điện tử bên trong của nguyên tử. Tương tác này dẫn đến việc tạo ra các tia X có bước sóng đặc trưng tỉ lệ với nguyên tử số (Z) của nguyên tử theo định luật Mosley:

Có nghĩa là, tần số tia X phát ra là đặc trưng với nguyên tử của mỗi chất có mặt trong chất rắn. Việc ghi nhận phổ tia X phát ra từ vật rắn sẽ cho thông tin về các nguyên tố hóa học có mặt trong mẫu đồng thời cho các thông tin về tỉ phần các nguyên tố này. Các mẫu đo phổ tán sắc EDX trong luận án này được thực hiện trên máy S-4800, Hitachi, Nhật Bản.

2.2.3 Phương pháp quang phổ hồng ngoại (IR)

- Nguyên lý chung: Phương pháp IR dựa trên sự tương tác của các bức xạ điện từ vùng hồng ngoại (400-4000 cm-1) với các phân tử nghiên cứu. Trong vùng này, năng lượng bức xạ yếu chỉ tương ứng với các mức năng lượng dao động và quay

của các nguyên tử, nhóm nguyên tử trong liên kết và xung quanh liên kết phân tử. Quá trình tương tác đó có thể dẫn đến sự hấp thụ năng lượng, có liên quan chặt chẽ đến cấu trúc của các phân tử. Trong phương pháp IR, chỉ có

Ta chiếu một chùm tia hồng ngoại đến mẫu chất hữu cơ với các bước sóng khác nhau và sau đó xác định xem bước sóng nào bị hấp thu, bước sóng nào không thì chúng ta sẽ có được một phổ hấp thu của mẫu đó.

những dao động nào kèm theo sự biến đổi momen lưỡng cực điện mới thực hiện các hấp thụ năng lượng cộng hưởng, tạo ra các đám phổ (vạch phổ) hấp thụ IR. Phương trình cơ bản của sự hấp thụ bức xạ điện từ là phương trình Lambert-Beer:

A= lg I0/I = ε.l.C (2.2)

trong đó: A là mật độ quang; I0, I là cường độ ánh sáng trước và sau khi ra khỏi chất phân tích; C là nồng độ chất phân tích (mol/l); l là bề dày của cuvet (cm); ε là hệ số hấp thụ phân tử.

Đường cong biểu diễn sự phụ thuộc của mật độ quang vào chiều dài bước sóng gọi là phổ hấp thụ hồng ngoại. Mỗi cực đại trong phổ IR đặc trưng cho một dao động của một liên kết trong phân tử. Bảng 2-3 thể hiện tần số đặc trưng của một số nhóm chức [6].

- Ứng dụng: nhận biết các chất

Trước khi ghi phổ hồng ngoại, nói chung ta đã có thể có nhiều thông tin về hợp chất hoặc hỗn hợp cần nghiên cứu như trạng thái vật lý, dạng bên ngoài, độ tan, điểm nóng chảy, điểm cháy,..

Sau khi ghi phổ hồng ngoại, nếu chất nguyên cứu là hợp chất hữu cơ thì trước tiên nghiên cứu vùng dao động hóa trị của H để xác định xem mẫu thuộc loại hợp chất vòng thơm hay mạch thẳng hoặc cả hai. Sau đó nghiên cứu các vùng tần số nhóm để xác định có hay không các nhóm chức. Trong vài trường hợp phương pháp này chỉ dùng để suy đoán kiểu hoặc loại hợp chất. Thông thường phương pháp này dùng để xác định các nhóm chức đính trên vật liệu hấp phụ xúc. Các mẫu đo phổ hồng ngoại trong luận án này được thực hiện trên máy Shimadzu IR, Nhật Bản.

2.2.4 Phương pháp đo bề mặt riêng (BET)

Nguyên tắc của phương pháp là sử dụng phương trình BET ở dạng:

0 0 1 1 . .( ) m. m. P C P V P P V C V C P     (2.3) Ta nhận thấy rằng 0 0 1 1 . .( ) m. m. P C P V P P V C V C P     .( 0 ) P V PP là hàm bậc nhất của biến số P/P0

Tại T= const, người ta đo thực nghiệm giá trị thể tích chất bị hấp phụ V ứng với áp suất cân bằng tương đối P/P0. Sau đó thiết lập đồ thị như hình 2-10 Đoạn thẳng nhận được trong khoảng giá trị P/P0 từ 0,05 đến 0,3 sẽ cho ta các kết quả: 1 . m C tg V C    (a)

OA = 1/(Vm.C) (b)

Từ (a) và (b) ta xác định được Vm và C. Biết Vm là thể tích khí bị hấp phụ tạo đơn lớp phân tử trên bề mặt. Biết Vm có thể tính được số phân tử chất bị hấp phụ. Bề mặt riêng của chất hấp phụ bằng tích số số phân tử bị hấp phụ (tính cho 1gam chất hấp phụ) và tiết diện ngang của phân tử đó.

Trường hợp hay gặp nhất trong kỹ thuật đo bề mặt riêng hiện nay là hấp phụ N2 ở 77K (nhiệt độ của nitơ lỏng). Nếu Vm được biểu diễn bằng đơn vị cm3

.g-1 và bề mặt SBET là m2.g-1 và thừa nhận tiết diện ngang của một phân tử N2 lỏng là ζ=0,162 nm2, thì SBET = 4,35 Vm. Các mẫu đo bề mặt riêng theo BET trong luận án này được thực hiện trên máy Micromeritics TriStar 3000 V6.07A, Mỹ và Quantachrome Nova Station A, Mỹ.

Hình 2-10 Đồ thị xác định bề mặt riêng theo BET

2.2.5 Phương pháp phân tích nhiệt (TGA/DTA)

- Nguyên lý chung: 0 A 0 .( ) P V PP P/P0 α

Phân tích nhiệt là nhóm các phương pháp nghiên cứu tính chất của mẫu đo khi tác động nhiệt lên mẫu theo một chương trình gia nhiệt, với một tốc độ gia nhiệt nào đó khi mẫu được đặt trong môi trường nhất định. Hay nói cách khác, phương pháp này theo dõi sự thay đổi tính chất của vật liệu mẫu đo theo sự thay đổi nhiệt độ.

Khi cung cấp nhiệt năng thì làm cho entanpi và nhiệt độ của mẫu tăng lên một giá trị xác định tùy thuộc vào nhiệt lượng cung cấp và nhiệt dung của mẫu. Ở trạng thái vật lý bình thường, nhiệt dung của mẫu biến đổi chậm theo nhiệt độ nhưng khi trạng thái của mẫu thay đổi thì sự biến đổi này bị gián đoạn. Khi mẫu được cung cấp nhiệt năng thì các quá trình vật lý và hóa học có thể xảy ra như sự nóng chảy hoặc phân hủy đi kèm với sự biến đổi entanpi, kích thước hạt, tính chất từ,.. Các quá trình biến đổi này có thể ghi nhận bằng phương pháp phân tích nhiệt với một chương trình nhiệt độ được thiết lập trước theo thời gian và sử dụng nguyên lý đo vi sai. Kỹ thuật đo của nguyên lý đo vi sai được thực hiện đo đồng thời trên 2 mẫu hoàn toàn tương đương nhau về chế độ đo. Một trong hai mẫu là mẫu cần khảo sát và mẫu còn lại là mẫu so sánh. Thông tin nhận được là kết quả so sánh tín hiệu nhận được từ hai mẫu trên.

-Ứng dụng: xác định độ bền nhiệt của vật liệu được thực hiện trên máy DTG-60H, Shimadzu, Nhật Bản.

2.2.6 Phương pháp hiển vi điện tử quét (SEM)

- Nguyên lý chung:

Nguyên tắc cơ bản của SEM là sử dụng chùm tia electron để tạo ảnh mẫu nghiên cứu. Chùm tia electron được tạo ra từ catốt (súng điện tử) qua hai tụ quang điện tử sẽ được hội tụ lên mẫu nghiên cứu. Khi chùm tia electron đập vào mẫu nghiên cứu sẽ phát ra các chùm tia electron phản xạ thứ cấp. Các

electron phản xạ này được đi qua hệ gia tốc điện thế vào phần thu và biến đổi thành tín hiệu ánh sáng. Tín hiệu khuếch đại đưa vào mạng điều khiển tạo độ sáng trên màn ảnh. Mỗi điểm trên mẫu cho một điểm trên màn. Độ sáng tối trên màn ảnh phụ thuộc vào lượng electron phát ra tời bộ thu và phụ thuộc vào hình dạng mẫu nghiên cứu [13].

- Ứng dụng: Chụp ảnh mẫu nghiên cứu với mức độ phóng đại lên đến hàng trăm nghìn lần cho phép ta biết các thông tin về vật liệu như hình dạng, kích thước, bề mặt của vật liệu. Trong luận án này, các ảnh SEM được chụp với độ phóng đại: 500; 5.000; 15.000; 25.000; 50.000; 100.000; 200.000 lần trên cùng loại máy đo phổ tán sắc EDX S-4800, Hitachi, Nhật Bản.

2.2.7 Phương pháp hiển vi điện tử truyền qua (TEM)

Đây là phương pháp rất quan trọng để xác định đặc trưng vật liệu như kích thước, cấu trúc và nhận dạng các pha khác nhau của vật liệu mao quản trung bình.

Thiết bị TEM chủ yếu bao gồm một cột kín được hút chân không gần 10-3 mmHg hoặc cao hơn, chứa nguồn electron và tổ hợp thấu kính hội tụ, kính vật và kính phóng đại. Chùm tia electron được tạo ra từ catốt qua 2 tụ quang electron sẽ hội tụ lên mẫu nghiên cứu. Khi chùm electron đập vào mẫu, một phần chùm electron sẽ truyền qua mẫu. Các electron truyền qua này được đi qua điện thế gia tốc vào phần thu và biến đổi thành tín hiệu ánh sáng, tín hiệu được khuếch đại đưa vào mạng lưới điều khiển tạo độ sáng trên màn ảnh. Độ sáng tối trên màn ảnh phụ thuộc vào lượng electron phát ra tới bộ thu và phụ thuộc vào hình dạng mẫu nghiên cứu.

Ứng dụng TEM cho ta biết thêm thông tin về cacbon nano là ống hay sợi, đường kính trong của ống cacbon nano và số lớp tạo nên độ dày của thành ống cacbon nano. Các mẫu chụp TEM trong luận án này được thực hiện trên thiết bị hiển vi điện tử truyền qua JEM1010, Hàn Quốc.

Chƣơng 3 KẾT QUẢ VÀ THẢO LUẬN 3.1 Chế tạo xúc tác Fe/-Al2O3

Xúc tác Fe/-Al2O3 được tổng hợp theo qui trình trình bày tại mục 2.1.3.1 với điều kiện nung ở 450°C trong 2 giờ để phân hủy hoàn toàn muối

Một phần của tài liệu Nghiên cứu tổng hợp, đặc trưng và một số ứng dụng của vật liệu cacbon nano ống bằng phương pháp xúc tác lắng đọng hóa học pha hơi khí dầu mỏ hóa lỏng (LPG) Việt Nam (Trang 68 - 154)

Tải bản đầy đủ (PDF)

(154 trang)