Tầm quan trọng của suất chiết xã hội

Một phần của tài liệu Bài giảng phân tích lợi ích chi phí (Trang 60)

Suất chiết khấu xã hội dùng để chiết khấu dòng ngân lưu kinh tế về hiện giá để có cơ sở quyết định lựa chọn giữa các phương án nhằm tối đa hóa phúc lợi kinh tế cho nền kinh tế nói chung. Suất chiết khấu xã hội là một tham số quan trọng trong phân tích lợi ích – chi phí. Nếu giữ nguyên tất cả các yếu tố khác, suất chiết khấu xã hội càng cao thì có càng ít dự án được chấp nhận. Hơn nữa, suất chiết khấu xã hội càng cao thì quyết định lựa chọn càng bị chệch về các dự án với thời gian sinh lợi tương đối sớm hơn vì lợi ích càng xa về tương lai sẽ bị chiết khấu nhiều hơn. Để thấy việc lựa chọn suất chiết khấu xã hội sẽ làm thay đổi thứ hạn các dự án như thế nào, hãy xét ví dụ sau đây:

Chính quyền địa phương chỉ có $100.000 để đầu tư vào một trong ba dự án sau đây.

Năm Phương án A Phương án B Phương án C 0 1 2 3 4 5 -80.000 25.000 25.000 25.000 25.000 25.000 -80.000 80.000 10.000 10.000 10.000 10.000 -80.000 0 0 0 0 140.000 NPV (2%) $37.838 $35.762 $46.802 NPV (3%) $34.490 $33.760 $40.770 NPV (4%) $31.300 $31.830 $35.070 NPV (5%) $28.240 $29.960 $29.690 NPV (6%) $25.310 $28.160 $24.620 NPV (8%) $19.820 $24.740 $15.280

57

NPV (10%) $14.770 $21.544 $6.929

NPV (12%) $10.120 $18.550 ($0.560)

Nếu chọn suất chiết khấu xã hội thấp (< 5%), phương án C sẽ có ưu thế hơn, trong khi đó nếu chọn suất chiết khấu cao hơn (≥ 5%), phương án B sẽ có ưu thế hơn. Như vậy, quyết định lựa chọn giữa các phương án phụ thuộc rất nhiều vào việc chọn suất chiết khấu xã hội. Từ ví dụ minh họa này ta có một số nhận xét sau đây:

- Đối với một dự án nhất định thì suất chiết khấu tăng, NPV giảm.

- Suất chiết khấu thấp có lợi cho dự án với tổng lợi ích cao nhất bất kể chúng phát sinh khi nào (phương án C) vì các thừa số chiết khấu xã hội xấp xỉ một.

- Tăng suất chiết khấu làm thừa số chiết khấu của các lợi ích và chi phí phát sinh càng xa trong tương lai càng nhỏ dần và vì thế giảm khả năng lựa chọn các dự án với dòng lợi ích tập trung chủ yếu vào giai đoạn cuối (phương án C) và ngược lại các dự án có dòng lợi ích chủ yếu tập trung ở giai đoạn đầu (phương án B) sẽ có lợi hơn. 7.3.2. Ước tính suất chiết khấu xã hội dựa vào ưu tiên thời gian

7.3.2.1. Ưu tiên theo thời gian cá nhân

Tỉ suất ưu tiên theo thời gian cá nhân là tỉ suất mà cá nhân chiết khấu một kết quả tương lai để nhận một giá trị tương đương ở hiện tại. Suất chiết khấu được xem như là “tỷ suất của sự không kiên nhẫn” và “phí tổn của sự chờ đợi”. Do đó, con người có xu hướng xem sự chờ đợi là một chi phí và thích hiện tại hơn tương lai. Tỷ suất đo lường xu hướng này gọi là tỷ suất ưu tiên theo thời gian cá nhân.

Hầu hết mọi người sẽ không sẵn lòng cho người khác mượn $100 hôm nay và được hứa sẽ hoàn trả lại đúng $100 sau một năm, thậm chí không có lạm phát và rủi ro (giá trị thực). Nói chung mọi người sẽ đánh giá $100 nhận được hôm nay cao hơn $100 giá trị thực sẽ nhận được năm sau. Có lẽ người ta sẽ cho mượn, ví dụ $90 hôm nay và được hứa chắc chắn sẽ hoàn trả lại, ví dụ $100 sau một năm.

Các nhà kinh tế học định nghĩa sở thích muốn tiêu dùng (được nhận) sớm hơn thay vì phải đợi chờ tiêu dùng (được nhận) trong tương lai là sự ưu tiên thời gian (time preference). Tỷ suất tại đó một cá nhân bàng quan giữa việc tiêu dùng (được nhận) một khoản tiền hiện tại để có thể tiêu dùng (được nhận) một khoản tiền lớn hơn trong tương lai là tỷ suất ưu tiên thời gian biên cá nhân (MRTP). Nếu một người bàng quan giữa việc nhận $100 ngay bây giờ và $110 sau một năm, thì ta nói anh ta có MRTP là 10%/năm.

Ví dụ: Một người được nhận tiền theo ba cặp lựa chọn. Mỗi lựa chọn là chọn ngay bây giờ hoặc năm sau:

58

Cặp Hiện tại Năm tới

(a) (b) (c) $100 $100 $100 100 1.000 140

Nếu phương án (a), người này sẽ chọn $100 bây giờ hơn là $100 sang năm. Trong khi ở phương án (b) người này sẽ chọn lấy $1.000. Người này sẽ lưỡng lự ở phương án (c), tức là 140$ năm sau sẽ tương đương bây giờ.

Từ giá trị tương đương này chúng ta tính suất chiết khấu cá nhân. PV = Bt (1+i)-t

PV = 100, Bt = 140, t = 1 => 100 = 140 (1+i)-1 => i = 0.4 hay 40%

+ Suất chiết khấu cá nhân thường được dùng cho dự án đầu tư cá nhân. Được tính theo phí cơ hội của vốn, mà thường là lãi suất vay vốn ngân hàng để đầu tư cho dự án.

+ Suất chiết khấu cá nhân là tỷ lệ giữa hai số tiền ở hai thời điểm khác nhau mà cá nhân cho rằng ngang nhau (bàng quan, lưỡng lự).

7.3.2.2. Ưu tiên theo thời gian xã hội

Trong phân tích lợi ích – chi phí suất chiết khấu xã hội phải phản ánh chi phí cơ hội của công quỹ được sử dụng đối với quốc gia nói chung. Lãi suất thị trường thường không thể dùng làm suất chiết khấu xã hội vì tồn tại biến dạng trên các thị trường vốn. Tuy nhiên, việc chọn suất chiết khấu xã hội vẫn là một trong những đề tài còn đang tranh luận nhất.

Suất chiết khấu ưu tiên theo thời gian xã hội là tỉ suất mà xã hội là một tổng thể chiết khấu một kết quả trong tương lai để lấy được một giá trị tương đương hiện tại.

Có hai phương pháp cơ bản để xác định suất chiết khấu xã hội thích hợp cho các dự án công: (1) Phương pháp tân cổ điển (neoclassical approach): cho rằng cá nhân là người duy nhất đánh giá chính xác nhất phúc lợi của chính bản thân họ, dựa vào sở thích cá nhân về hành vi tiết kiệm và đầu tư làm cơ sở xuất phát điểm. (2) Phương pháp người ra quyết định (decisionmaker approach): chỉ người ra quyết định của chính phủ với đầy đủ thông tin và tầm nhìn chiến lược mới có thể thay thế sự đánh giá của cá nhân về các quỹ có thể đầu tư bằng một giá trị nào đó do người ra quyết

59

định chọn. Nó có lẽ thích hợp đối với nền kinh tế kế hoạch tập trung hay nền kinh tế với sự can thiệp mạnh từ phía chính phủ.

Ở trong bài giảng này ta chỉ nghiên cứu tỷ suất chiết khấu xã hội được suy ra từ sự ưu tiên theo thời gian cá nhân (lựa chọn suất chiết khấu xã hội theo phương pháp tân cổ điển.) Đầu tư cá nhân trong tương lai dễ chấp nhận nhất là đầu tư trái phiếu chính phủ vì nó đáp ứng được các yêu cầu: dài hạn, rủi ro rất thấp, biết rõ ràng mức sinh lợi, đa số người tham gia.

+ Quy trình ước tính

Các cá nhân đầu tư để nhận được một thu nhập (lợi ích) trong tương lai. Suất thu nhập chung của các cá nhân này có thể dùng làm suất chiết khấu xã hội (mức lãi suất trái phiếu chính phủ).

+ Điều chỉnh lạm phát

Suất sinh lợi của trái phiếu đo lường những khoản sinh lợi trong một năm, và trong đó có thể có lạm phát. Nếu lạm phát xảy ra, suất sinh lợi trái phiếu sẽ cao hơn suất chiết khấu xã hội, công thức điều chỉnh sẽ là:

Suất chiết khấu thực = suất chiết khấu danh nghĩa – mức lạm phát.

Ví dụ: Suất sinh lợi trái phiếu là 10%/năm (lãi suất trái phiếu danh nghĩa). Mức lạm phát là 3% như thế suất chiết khấu xã hội: Suất chiết khấu xã hội = 10 – 3 = 7%

+ Điều chỉnh đối với thuế

Thuế thu nhập sẽ làm giảm thu nhập thực tế từ lợi ích mua trái phiếu, do đó thuế cần phải loại khỏi suất chiết khấu theo công thức:

Suất chiết khấu thực sau thuế = suất chiết khấu thực – điều chỉnh đối với thuế. - Trong đó: Điều chỉnh đối với thuế = suất chiết khấu thực * thuế suất.

=> Suất chiết khấu thực sau thuế = suất chiết khấu thực – suất chiết khấu thực * thuế suất = Suất chiết khấu thực (1 – thuế suất).

Ví dụ: với ví dụ trên và suất thuế thu nhập là 33% ta có: Suất chiết khấu xã hội = 7(1-0.33) = 4.7%. Đây là suất chiết khấu ưu tiên theo thời gian xã hội.

+ Những hạn chế đối với suất chiết khấu xã hội theo thời gian

- Sự thiển cận của con người: họ ưu tiên hiện tại hơn tương lai (tiêu dùng tất cả bây giờ, không có tiết kiệm cho tương lai) như thế suất chiết khấu của họ là rất cao do vậy, ảnh hưởng suất chiết khấu xã hội.

- Những người không mua: rất nhiều người không mua trái phiếu nhưng lại đầu tư khoản tiết kiệm của họ vào nơi nào có lợi tức cao hơn. Một số người khác không mua trái phiếu vì họ tiêu xài toàn bộ thu nhập và không còn gì để tiết kiệm. Cả hai loại

60

người này cho thấy tỷ suất ưu tiên thời gian của họ lớn hơn lãi suất trái phiếu. Trên cơ sở này, cách tính tỷ suất từ trái phiếu cho kết quả ước tính tối thiểu của tỷ suất ưu tiên thời gian.

Trong hai hạn chế này, những tác động của sự thiển cận cho rằng tỷ suất quyết định bởi thị trường nên được hạ thấp để đạt được một tỷ suất xã hội thực theo ưu tiên thời gian. Mặt khác, các tác động của sự không mua gợi ý rằng nên tăng lãi suất.

7.3.3. Ước tính suất chiết khấu theo chi phí cơ hội - Nguyên tắc - Nguyên tắc

Chính phủ đã không dùng ngân sách để đầu tư như khu vực tư nhân hiện đang làm để nhận một lợi ích, như thế lợi ích này đã bị bỏ qua bởi chính phủ (phí cơ hội) và coi đó như suất chiết khấu xã hội (là khoản phần trăm lợi tức mà nguồn vốn này đáng lẽ có thể tạo ra từ khu vực tư nhân).

Người ta sử dụng tỷ suất sinh lợi theo chi phí cơ hội làm suất chiết khấu để tính cho các đầu tư công. Chi phí cơ hội xã hội là lợi tức của khoản đầu tư bị thay thế bởi một dự án cụ thể.

- Phương pháp tính

a. Nhận dạng một khoản đầu tư gốc, không có rủi ro. Bất cứ công ty nào cũng có thể đầu tư vào trái phiếu dài hạn, không rủi ro của chính phủ thay vì lựa chọn khác. Do đó, các trái phiếu này là cơ sở hay điểm đầu thích hợp để ước tính tỷ suất theo chi phí cơ hội.

b. Quan sát tỷ suất sinh lợi của khoản đầu tư. Nếu là trái phiếu thì suất sinh lợi danh nghĩa trước thuế.

c. Xác đinh mức độ rủi ro ở đầu tư tư nhân

Đầu tư tư nhân sẽ có nhiều rủi ro hơn trái phiếu chính phủ, nếu bạn chấp nhận rủi ro thì sẽ có mức lợi tức cao hơn.

Ví dụ: Lãi suất trái phiếu 10% + tỷ lệ rủi ro 2% = 12% Tỷ lệ sinh lời tối thiểu tư nhân là 12%

d. Điều chỉnh lạm phát và thuế theo cách thông thường

Tỷ lệ sinh lợi 12% là tỷ lệ danh nghĩa trước thuế. Giả sử tỷ lệ lạm phát trong dài hạn là 3% và thuế suất thuế thu nhập là 33%.

Suất chiết khấu thực =12 – 3 = 9%

Suất chiết khấu thực sau thuế = 9(1 – 0,33) = 6%

- Suất chiết khấu tính theo phí cơ hội lớn hơn 6% so với ưu tiên theo thời gian xã hội là 4.7%

61

- Suất chiết khấu theo phí cơ hội tỏ ra hợp lý hơn do đưa thêm rủi ro và phù hợp với thuyết thoả dụng.

CÂU HỎI ÔN TẬP

1. Một dự án cần khoản đầu tư ban đầu là 500 triệu đồng. Lợi nhuận kỳ vọng của dự án vào cuối năm thứ 5 là 200 triệu đồng. Có nên đầu tư vào dự án này không? Biết lãi suất ngân hàng là 8%/năm.

2. Bạn gởi số tiền là 10 triệu đồng vào ngân hàng với lãi suất 0,5% tháng (kỳ ghép lãi: tháng), sau bao nhiêu tháng thì bạn có được số tiền cả vốn lẫn lãi là 15 triệu đồng?

3. Một nhóm sinh viên năm nhất muốn có số tiền là 200 triệu đồng vào cuối năm 4 để mở công ty tư vấn, vậy bây giờ, ở thời điểm đầu năm thứ nhất nhóm sinh viên này cần có số tiền gởi vào ngân hàng là bao nhiêu? Biết lãi suất là 10%/năm.

4. Xét chính quyền địa phương đang xem xét hai phương án sau đây: Phương án 1 tạo ra một lợi ích là $10.500 sau 4 năm kể từ bây giờ, trong khi đó phương án 2 tạo ra một lợi ích là $5.500 sau 4 năm kể từ bây giờ và một khoản lợi ích khác là $5.400 sau 5 năm kể từ bây giờ. Giả sử suất chiết khấu là 8%/năm. Nên chọn phương án nào?

5. Bạn bán căn nhà với giá 900 triệu đồng. Người mua đã đồng ý, nhưng anh ta là giáo viên không có tiền trả ngay và thương lượng với bạn cho anh ta được trả góp trong 5 năm có tính đến lãi suất thị trường là 10%/năm. Nếu bạn đồng ý theo phương thức cho họ trả đều hàng năm thì số tiền này là bao nhiêu mỗi lần?

6. Món quà nào dưới đây bạn thích nhất? a. Thu nhập hàng năm là 100$ trong năm năm. b. Thu nhập một lần 552,57$ vào cuối năm thứ 5.

Giả sử có suất chiết khấu theo thời gian là 5%. Tính giá trị hiện tại của mỗi món quà nói trên và quyết định sự lựa chọn của bạn theo sự ưu tiên thời gian.

62

Chương 8: ĐÁNH GIÁ HIỆU QUẢ VÀ PHÂN TÍCH RỦI RO 8.1. Các tiêu chí đánh giá dự án

Để đánh giá các phương án và ra quyết định lựa chọn, cần có các tiêu chí đầu tư. Tiêu chí đầu tư là những công cụ đánh giá các phương án.

Định nghĩa: Tiêu chí đầu tư là công cụ quy đổi các lợi ích và chi phí phát sinh ở các thời điểm khác nhau về một thời điểm chung nhằm so sánh lợi ích ròng của các phương án.

Có 3 tiêu chí đo lường lợi ích ròng.

- Hiện giá ròng NPV: đo lường lợi ích ròng thực tế, cho biết con số tuyệt đối. - Tỷ số lợi ích chi phí BCR: cho biết tỷ lệ tương đối giữa lợi ích và chi phí của phương án.

- IRR: tỷ suất sinh lợi nội tại (của một đồng lợi ích tương lai với một đồng chi phí hiện tại) mà tại đó hiện giá của dòng lợi ích bằng hiện giá của dòng chi phí.

Ngoài ra còn có các tiêu chí khác như: thời gian hoàn vốn, tỷ suất hoàn vốn, thường được dùng trong phân tích tài chính.

8.1.1. Hiện giá ròng (NPV)

Hiện giá ròng là tiêu chí về lợi ích ròng thực tế. Nó là hiện giá của lợi ích trừ hiện giá của chi phí.

Hiện giá lợi ích:

PV(B) = B0/(1+i)0 + B1/(1+i)1 + … + Bn/(1+i)n

PV(B) = ∑ ( ) Hiện giá chi phí:

PV(C) = C0/(1+i)0 + C1/(1+i)1 + … + Cn/(1+i)n

PV(C) = ∑ ( ) Hiện giá ròng:

NPV = PV(B) – PV(C) = (B0 – C0) + (B1 – C1)/(1 + i)1 + … + (Bt – Ct)/(1 + i)t

Quy tắc quyết định:

(a) Các quyết định chấp nhận hay bác bỏ:

- NPV > 0: dự án đem lại lợi ích xã hội ròng. Nên chấp nhận dự án.

- NPV < 0: dự án không đem lại lợi ích xã hội ròng, hoặc gây tổn thất. Nên bác bỏ dự án.

63

- Nếu NPV(A) > NPV(B), chọn phương án A - Nếu NPV(B) > NPV(A), chọn phương án B 8.1.2. Tỷ số lợi ích – chi phí (BCR)

Tỷ số lợi ích – chi phí là tỷ số hiện giá của các lợi ích so với hiện giá của các chi phí, và là tiêu chí lợi ích ròng tương đối.

BCR = PVB/PVC Quy tắc quyết định:

- NPV > 0, thì BCR > 1: dự án là đáng mong muốn - NPV < 0, thì BCR < 1: dự án là không đáng mong muốn

Theo tiêu chí này, phương án nào có tỷ số BCR cao là đáng mong muốn nhất. 8.1.3. Tỷ suất sinh lời nội bộ (IRR)

Tỷ suất sinh lợi nội tại là một tiêu chí khác về lợi ích ròng tương đối và đó là tỷ lệ sinh lợi của lợi ích so với chi phí.

Một phần của tài liệu Bài giảng phân tích lợi ích chi phí (Trang 60)

Tải bản đầy đủ (PDF)

(77 trang)