II I Hoạt động trên lớp : Hoạt động 1 :
2. Diện tích xung quanh hình nĩn
GV : Thực hành cắt mặt xung quanh của hình nĩn dọc theo một đường sinh rồi trải ra Hỏi : Hình khai triển mặt xung quanh của hình nĩn là hình gì ?
-Nêu cơng thức tính diện tích hình quạt trịn ? -Độ dài cung AA’A được tính như thế nào ? -Tính diện tích quạt trịn AA’A ?
–Đĩ cũng chính là Sxq của hình nĩn Vậy Sxq
của hình nĩn là Sxq = πrl
Với r là bán kính đáy hình trịn
l là độ dài đường sinh
-Tính diện tích tồn phần của hình nĩn như thế nào ?
Nêu cơng thức tính Sxq của hình chĩp đều ?
GV : Nhận xét : Cơng thức tính diện tích xung quanh của hình nĩn tương tự như hình chĩp đều , đường sinh chính là trung đoạn của hình
HS quan sát chiếc nĩn .
Một hs lên chỉ rõ các yếu tố của hình nĩn : Đỉnh , đường trịn đáy , đường sinh , mặt xung quanh , mặt đáy .
HS thực hiện quan sát theo nhĩm
HS : Quan sát
HS : Hình khai triển mặt xung quanh của hình nĩn là một hình quạt
-Diện tích hình quạt trịn : Sq = R
2
l
-Độ dài cung AA’A chính là độ dài đường trịn ( O ; R ) vậy bằng 2πR Squạt = 2 r. 2 π l = πrl HS : STP = Sxq +Sđ = πrl + π r2 -Sxq của hình chĩp đều là : Sxq = p . d
Với p là nửa chu vi đáy
chĩp đều khi số cạnh của đa giác đáy gấp đơi lên mãi . Ví dụ : Tính Sxq của hình nĩn biết : h = 16 cm r = 12 cm
GV yêu cầu hs nêu cách tính .
Hoạt động 3 :