... thấy dù x là biến độc lập hay x là hàm khả vi của một biến độc lập khác thì dạng vi phân cấp 1 của nó vẫn không thay đổi. Đây chính là tính bất biến dạng của biểu thức vi phân. IV. Vi phân cấp cao ... Giả sử hàm số y = f(x) khả vi trong (a,b). Vi phân dy = f’(x)dx được gọi là vi phân cấp 1 của hàm y = f(x) tại x ∈ (a,b). Nếu hàm số đạo hàm f’(x) cũng có đạo hàm tại x, lấy vi phân của hàm dy ... Chương 3 Tích phân không xác định Tích phân không xác định §1. ĐỊNH NGHĨA VÀ TÍNH CHẤT I. Định nghĩa nguyên hàm của hàm số Định nghĩa 1: Ta nói rằng hàm số F(x) là một nguyên hàm của hàm số f(x)...
Ngày tải lên: 23/02/2014, 01:20
Tích phân hàm một biến doc
... tính tích phân các hàm hữu tỉ thực sự, ta phân tích nó thành tổng của các phân thức đơn giản, rồi tính tích phân. 6.1.2. Các phương pháp tính TPBĐ 1. Phương pháp đổi biến số. 2. Phương pháp tích ... Định nghĩa tích phân bất định 2. Bảng các tích phân cơ bản 3. Các tính chất của tích phân bất định 2. Phương pháp tích phân từng phần Giả sử u(x), v(x) là hai hàm số khả vi, có các đạo hàm u’(x), ... e x ∫ xx dx ln Đặt u = lnx 6.1. Tích phân bất định 6.2. Tích phân xác định 6.4. Tích phân suy rộng NỘI DUNG 6.3. Một số ứng dụng hình học của tích phân xác định 6.1. Tích phân bất định 6.1.1. Khái...
Ngày tải lên: 11/03/2014, 08:20
Tích phân hàm một biến docx
... tổng tích phân của hàm f(x) trên đoạn [a, b ]. [a, b] : gọi là đoạn lấy tích phân, a : cận dưới, b : cận trên. ∫ b a : dấu tích phân xác định f(x) : hàm dưới dấu tích phân x : biến số tích phân ... ). Hãy xác định diện tích hình thanh cong aABb ? x y A B 0 ξ a=x 0 1 x 1 ξ 2 x 2 x i-1 ξ i x i x =b n f(ξ ) i f(ξ ) 1 f(ξ ) 2 f ( x ) TÍCH PHÂN HÀM TÍCH PHÂN HÀM MỘT BIẾN MỘT BIẾN Chương 3: Chương ... Diện tích hình phẳng giới hạn bởi đường y = f(x) và trục Ox trên dxxfS a ∫ +∞ = )( 0 a x y y = f(x) đoạn [a, +∞) được tính theo công thức: TÍCH PHÂN HÀM MỘT BIẾN §1. Tích phân bất định §2. Tích...
Ngày tải lên: 11/03/2014, 08:20
Phép tính vi phân hàm một biến
... 8 Ph´ep t´ınh vi phˆan h`am mˆo . t biˆe ´ n 8.1 D - a . oh`am 61 8.1.1 D - a . o h`am cˆa ´ p1 61 8.1.2 D - a . o h`am cˆa ´ pcao 62 8.2 Viphˆan 75 8.2.1 Vi phˆan cˆa ´ p1 75 8.2.2 Vi phˆan cˆa ´ pcao ... f (x). H`am f(x) kha ’ vi nˆe ´ un´oc´od a . o h`am f (x)h˜u . uha . n. H`am f(x) kha ’ vi liˆen tu . c nˆe ´ ud a . o h`am f (x)tˆo ` nta . i v`a liˆen tu . c. Nˆe ´ u h`am f(x) kha ’ vi th`ı n´o liˆen ... 73 liˆen tu . c v`a kha ’ vi ta . idiˆe ’ m x = x 0 ? (D S. a =3x 2 0 , b = −2x 3 0 ). 54. X´ac d i . nh α v`a β dˆe ’ c´ac h`am sau: a) liˆen tu . c kh˘a ´ pno . i; b) kha ’ vi kh˘a ´ pno . inˆe ´ u 1)...
Ngày tải lên: 29/09/2013, 16:20
Phép tính vi phân của hàm một biến ppt
... 4 Phép tính vi phân của hàm một biến 2 4.1 Đạo hàm và cách tính 3 4.1.1 Định nghĩa đạo hàm 3 4.1.2 Công thức đối với số gia của hàm số 3 4.2 Các qui tắc tính đạo hàm 4 4.2.1 Các qui tắc tính ... tính đạo hàm 4 4.2.2 Đạo hàm của hàm số hợp 4 4.2.3 Đạo hàm của hàm số ngược 6 4.2.4 Đạo hàm theo tham số 7 4.2.5 Đạo hàm một phía 7 4.2.6 Đạo hàm vô cùng 9 4.2.7 Đạo hàm các hàm số sơ ... cấp 9 4.3 Vi phân của hàm số 10 4.3.1 Định nghĩa 10 Chương 4. Phép tính vi phân của hàm một biến Lê Văn Trực 43 43 4.36 Cho n số 12 , , , n aa a. Xác định x sao cho hàm số. 2 1 ()...
Ngày tải lên: 07/03/2014, 17:20
Phép tính vi phân hàm nhiều biến.pdf
... = 0, v(1, 2) = 0. 13 GIẢI TÍCH (CƠ BẢN) Tài liệu ôn thi cao học năm 2005 Phiên bản đã chỉnh sửa PGS TS. Lê Hoàn Hóa Ngày 10 tháng 12 năm 2004 Phép Tính Vi Phân Hàm Nhiều Biến I - Sự liên tục 1. ... f 2 (x, y), . . . , f p (x, y)) Các hàm f 1 , f 2 , . . . , f p : A × B → R được gọi là hàm thành phần của f. Mỗi hàm thành phần là một hàm số thực theo n + p biến số thực (x, y) = (x 1 , x 2 , ... chứa z 0 và các hàm x, y : I → R khả vi liên tục thỏa mãn: x(z 0 ) = x 0 , , y(z 0 ) = y 0 , f(x(z), y(z), z) = 0 g(x(z), y(z), z) = 0 , với ∀z ∈ I và đạo hàm dx dz , dy dz được tính từ hệ phương...
Ngày tải lên: 04/08/2012, 14:24
Phép tính vi phân hàm nhiều biến (tt).pdf
... t 2 ) k/2 . 2 GIẢI TÍCH (CƠ BẢN) Tài liệu ôn thi cao học năm 2005 Phiên bản đã chỉnh sửa PGS TS. Lê Hoàn Hóa Ngày 3 tháng 12 năm 2004 Phép Tính Vi Phân Của Hàm Nhiều Biến (tt) 5 Công thức Taylor 5.1 Đạo hàm ... sử đạo hàm riêng ∂f ∂x i (x), i = 1, 2, . . . , n tồn tại với mọi x ∈ D. Khi đó ∂f ∂x i : D → R biến x ∈ D thành ∂f ∂x i (x) là hàm số thực theo n biến số thực và được gọi là hàm đạo hàm riêng ... = t 2 e −t 2 . Đạo hàm ϕ (t) = 2t(1 − t 2 )e −t 2 . Đồ thị của hàm ϕ với t 0: Đồ thị của hàm f là mặt cong (S) sinh bởi đường cong đồ thị của hàm ϕ quay quanh trục Oϕ. Hàm f đạt cực đại địa...
Ngày tải lên: 04/08/2012, 14:24
Ôn thi thạc sĩ toán học tài liệu hướng dẫn phép tính vi phân hàm nhiều biến
... f 2 (x, y), . . . , f p (x, y)) Các hàm f 1 , f 2 , . . . , f p : A × B → R được gọi là hàm thành phần của f. Mỗi hàm thành phần là một hàm số thực theo n + p biến số thực (x, y) = (x 1 , x 2 , ... học năm 2005 Phiên bản đã chỉnh sửa PGS TS. Lê Hoàn Hóa Ngày 10 tháng 12 năm 2004 Phép Tính Vi Phân Hàm Nhiều Biến I - Sự liên tục 1. Không gian R n : Định nghĩa: Với x = (x 1 , x 2 , . . . , ... O R n thỏa: lim h→O R n ϕ(h) = 0 Vi phân của f tại x, ký hiệu là df(x), định bởi: df(x) = n i=1 ∂f ∂x i (x)h i = n i=1 ∂f ∂x i (x)dx i thay h i bằng dx i Tính chất:Nếu f khả vi tại x thì f liên tục...
Ngày tải lên: 21/06/2013, 09:54
Phép tính vi phân hàm nhiều biến
... nhau: ∂ 2 f ∂x∂y = ∂ 2 f ∂y∂x · C ´ AC V ´ IDU . 126 Chu . o . ng 9. Ph´ep t´ınh vi phˆan h`am nhiˆe ` ubiˆe ´ n 9.2.1 Vi phˆan cˆa ´ p1 Gia ’ su . ’ h`am w = f(x, y) kha ’ vi ta . id iˆe ’ m M(x, y), t´u . cl`ata . id ´o s ... d ˆo ´ iv´o . i ∆x v`a ∆y cu ’ asˆo ´ gia ∆f) D 1 ∆x + D 2 ∆y d u . o . . cgo . il`avi phˆan (hay vi phˆan to`an phˆa ` n ≡ hay vi phˆan th´u . nhˆa ´ t) cu ’ a h`am w = f(x, y)v`ad u . o . . ck´yhiˆe . ul`adf ... 0. 9.2.2 ´ Ap du . ng vi phˆan dˆe ’ t´ınh gˆa ` nd´ung Dˆo ´ iv´o . i∆x v`a ∆y d u ’ b´e ta c´o thˆe ’ thay xˆa ´ pxı ’ sˆo ´ gia ∆f(M)bo . ’ ivi phˆan df (M), t´u . cl`a ∆f(M) ≈ df (M) 9.2. Vi phˆan cu ’ a...
Ngày tải lên: 29/09/2013, 16:20
Phép tính vi phân hàm nhiều biến
... y k k k k k k f x y k k k k = = → + − = = → + + . 4. Tính các đạo hàm hàm riêng cấp 1 và vi phân toàn phần của các hàm sau đây a) 3 3 3z x y xy= + − b) 2 2 2 2 x y z x y − = + c) ... = + . 7. Tính đạo hàm hàm riêng của các hàm hợp sau đây a) Cho 2 sin , , u z x y x y v u v = = = . Tính , u v z z ′ ′ . b) Cho ( , ) arctg , sin , cos . x f x y x u v y u v y = = = Tính , . u ... ) : 6 , 0,6AB y x x= − ∈ . Ta có hàm một biến ( ) ( ) 2 3 2 4 2 12 :z x y x y x x z x= − − = − = ( ) 2 6 24 0 4 0,6 x z x x x ′ = − = ⇔ = ∈ Trên AB, hàm số có một điểm tới hạn ( ) 2 2,4M và...
Ngày tải lên: 16/01/2014, 17:16
Tài liệu Chương I: PHÉP TÍNH VI PHÂN HÀM NHIỀU BIẾN ppt
... phân cấp cao Cho hàm ị biến z ụ fậxờ yấề Bản thân cũng là một hàm theo ị biến xờ y nên ta có thể xét vi phân của nóề ỷếu dfậxờ yấ có vi phân thì vi phân ðó ðýợc gọi là vi phân cấp 2 của fậxờ ... hoangly85 26 3 -Tính vi phân toàn phần của hàm sốầ i) j) 4- Tìm vi phân cấp ị của hàm số k) l) m) n) 5-Cho f(t) là hàm một biến khả vi Ðặt z ụ fậx 2 -y 2 ). Chứng tỏ rằng hàm z thoả mãn ... có thể tính dạo hàm riêng theo biến x tại ậx o , y o ) bằng cách coi y ụ y o là hằng số và tính ðạo hàm của hàm một biến fậxờ y o ) tại x ụ x o . Týõng tựờ ðể tính ðạo hàm riêng theo biến y...
Ngày tải lên: 23/02/2014, 19:20
Bạn có muốn tìm thêm với từ khóa: