bất đẳng thức bunhiacopxki cho 3 so

Rèn luyện tư duy sáng tạo cho học sinh trung học phổ thông qua dạy học giải toán về bất đẳng thức côsi và bất đẳng thức bunhiacopxki

Rèn luyện tư duy sáng tạo cho học sinh trung học phổ thông qua dạy học giải toán về bất đẳng thức côsi và bất đẳng thức bunhiacopxki

... 3 3 3 1 3 abc   . Chứng minh: Ta có: 3 3 3 3 3 1 1 1 3 3 . 3 3 3 3 3 3 a b a b ab ab     . Tương tự: 3 3 3 3 11 3 , 3 . 3 3 3 3 b c bc c a ca      Cộng vế với vế các bất đẳng ... 3 thích hợp nhất cho bài toán này. Đổi biến ,,abc lần lượt bởi ,, b c a a b c (vì bất đẳng thức cho thuần nhất nên ta không cần có hệ số k), ta được: 6 6 6 6 3 3 3 3 6 3 3 3 3 6 3 3 3 3 1 b ... bất đẳng thức trên, ta được:       3 3 3 3 3 3 3 3 3 1 1 2 1 2 3 3 2 3 . 3 3 3 3 a b c ab bc ca a b c a b c                 Dấu bằng xảy ra khi và chỉ khi 1 3 abc ...

Ngày tải lên: 09/02/2014, 15:21

21 2,9K 6
BẤT ĐẲNG THỨC HOÁN VỊ CÁC SỐ VÒNG QUANH

BẤT ĐẲNG THỨC HOÁN VỊ CÁC SỐ VÒNG QUANH

... cba abc cab bca c ba b ac b ac a cb a cb c ba 23 23 23 3 3 3 3 3 3 3 3 3 3 3 3 == = = = = = = . 3) áp dụng bất đẳng thức Cô-si cho ba số dơng, ta có: )1( c ab 3 b ca a bc c ba 5 33 ++ ; 3 3 5 3 . (2) b c ca ... b d d b a c c a b d d b a c c a 2222 6 3 6 3 6 3 6 3 ++++++ ; 2) 3 2 3 2 3 2 3 2 13 45 13 45 13 45 13 45 b da a cd d bc c ab b ad a dc d cb c ba ++++++ . Giải 1) áp dụng bất đẳng thức Cô-si cho ba số dơng, ta có: 3 3 3 3 ... 1dcba 1abcd b ad a dc d cb c ba abdc adcb cdba bcad 1abcd d bc c ab b ad c ab b da a dc b da a cd d cb a cd d bc c ba 13 45 13 45 13 45 13 45 35 35 35 35 3 2 3 2 13 45 3 2 3 2 13 45 3 2 3 2 13 45 3 2 3 2 13 45 ==== = === = = = = = == == == == . Nhận...

Ngày tải lên: 18/09/2013, 12:10

18 1,9K 28
Bất đẳng thức Bunhiacopxki.doc

Bất đẳng thức Bunhiacopxki.doc

... http://violet.vn/tranthuquynh81 Chuyên đề: Bất đẳng thức. Chứng minh bất đẳng thức bằng cách áp dụng bất đẳng thức bunhiacôpxki Bài toán 1: Cho 4 3 ,, cba và a+b +c =3. Chứng minh rằng: 733 434 34 +++++ cba Bài toán 2: Cho 4 số ... biểu thức 33 3 cbaM ++= Bài toán 13: Cho 3 a . Tìm giá trị nhỏ nhấ của biểu thức a aS 1 += * Dạng 3: Sử dụng bất đẳng thức Cô-Si trong giải phơng trình Bài toán 14: Giải phơng trình 141 232 532 2 +=+ xxxx Bài ... .14 22 =+ ba CMR: .10)6( 2 + ba Chuyên đề: Bất đẳng thức cô-si - áp dụng (Tiếp theo) * Dạng 2: Sử dụng bất đẳng thức Cô-Si trong bài toán cực trị. +Dạng 2.1: Sử dụng bất đẳng thức Cô-Si trong bài toán cực...

Ngày tải lên: 17/10/2013, 09:11

3 4,1K 87
Gián án Sử dụng bất đẳng thức Bunhiacopxki

Gián án Sử dụng bất đẳng thức Bunhiacopxki

... các bất đẳng thức cơ bản để giải các loại toán và bài toán khác là khá hiệu quả thông qua đó mà lời giải được đơn giản hơn, thu được kết quả nhanh chóng. Bất đẳng thức Bunhiacopski là một bất đẳng ... mục đích nâng cao, mở rộng hiểu biết cho học sinh nhất là việc bồi dưỡng học sinh giỏi, giúp các em hiểu sâu sắc hơn về bất đẳng thức đặc biệt là bất đẳng thức Bunhiacopxki. Qua đó giúp học sinh ... nhau song một trong những phương pháp giải tương đối có hiệu quả là việc sử dụng các bất đẳng thức cơ bản để giải. Học sinh được tiếp xúc rất nhiều về các phương pháp giải các bất đẳng thức và...

Ngày tải lên: 03/12/2013, 15:11

7 7,1K 163
Tài liệu Bất đẳng thức MINCÔPXKI và một số ứng dụng giải toán pptx

Tài liệu Bất đẳng thức MINCÔPXKI và một số ứng dụng giải toán pptx

... bất đẳng thức MINCÔPXKI và một số ứng dụng giải toán Lời giải : giả sử M(x; y), ta có : () ()( ) 22 2 3; 1 3 2 A Mx yBM x y=++ =−+− JJJJG JJJJG , Do đó : () ()( ) 22 2 31 3AM BM x ... phẳng Oxy cho các véctơ AB J JJG và A C J JJG lần lượt có các toạ độ sau đây : 2 2 33 ; 22 2 2 yy A Bx y AB x y ⎛⎞ ⎛ ⎛⎞ =+ ⇒ = + + ⎜⎟ ⎜ ⎜⎟ ⎜⎟ ⎜ ⎝⎠ ⎝⎠ ⎝ JJJGJJJG ⎞ ⎟ ⎟ ⎠ 2 2 33 ; 22 2 2 zz A Cx ... kiến thức mà mấy ổng ngoài đó không cho thì chứng minh luôn hoặc cứ phết 1câu “ dễ dàng chứng minh…cái này” – Không phải ngày xưa Fermat cũng thế mà nổi tiếng sao ????? Bất đẳng thức...

Ngày tải lên: 20/01/2014, 10:20

3 9,2K 91
BẤT ĐẲNG THỨC BUNHIACOPXKI VÀ ỨNG DỤNG

BẤT ĐẲNG THỨC BUNHIACOPXKI VÀ ỨNG DỤNG

... () ( ) 2 2222 1 234 1 2 3 4 14 x xxx xxxx= +++ ≤ +++ 2222 1 234 1 4 xxxx⇒+++≥ (1) • () ( ) 2 2222 3 3 3 3 1 234 11 22 33 44 x xxx xxxxxxxx+++ = + + + () () 33 33 1 234 1 234 x xxxxxxx≤+++ +++ 33 33 1 234 x xxx=+++ ... 33 33 1 234 x xxx=+++ (vì 1 234 1xxxx+++=) 33 33 2222 1 234 1 234 2222 1 234 xxxx x xxx xxxx +++ ⇔ ≥+++ +++ (2) • () 2 33 33 1 234 x xxx+++ () 2222 11 2 2 33 4 4 x xxxxxxx=+++ ()() 22224444 1 234 1 234 x xxxxxxx≤ ... 2222 x yzt⇒≥≥≥và 33 33 x yzt≥≥≥ và y zt xzt xyt x yz X Y Z T++≤++≤++≤++⇔ ≤ ≤ ≤ 1111 X YZT ⇒≥≥≥ Áp dng BT Trê-b-sp cho hai dãy s sau: 33 33 1111 x yzt X YZT ⎧ ≥≥≥ ⎪ ⎨ ≥≥≥ ⎪ ⎩ () 33 33 333 3 11111 4 xyzt x yzt XY...

Ngày tải lên: 22/02/2014, 21:51

37 28,5K 45
phát triển và nâng cao kỹ năng vận dụng bất đẳng thức bunhiacopxki

phát triển và nâng cao kỹ năng vận dụng bất đẳng thức bunhiacopxki

... NÂNG CAO KỸ NĂNG VẬN DỤNG BẤT ĐẲNG THỨC BUNHIACOPXKI GV: PHAN NGỌC TOÀN 26       6 6 6 6 3 3 3 3 6 3 3 3 3 6 3 3 3 3 3 3 3 2 6 3 3 3 3 6 3 3 3 3 6 3 3 3 3 ( ) 1 y z x y x y z x z y ... cần chứng minh : 3 3 3 3 2 3 2 ( ) ( ) x y z t x yzt       Hay 3 3 3 2 2 2 2 2 sym x y x yzt y z t      Theo bất đẳng thức Côsi : 3 3 3 3 3 3 3 2 4 2 ( ) 3 3 sym x yzt x y z ... NĂNG VẬN DỤNG BẤT ĐẲNG THỨC BUNHIACOPXKI GV: PHAN NGỌC TOÀN 23 Tương tự, . . ; l y l z b c z x   4) Chọn 3 3 3 3 3 ; ; c a b x y z a b c    ta có: 3 3 32 3 3 3 3 3 3 . . . . l...

Ngày tải lên: 25/02/2014, 20:07

33 4,8K 9
Khóa luận tốt nghiệp toán học: BẤT ĐẲNG THỨC BERNOULLI, BẤT ĐẲNG THỨC BUNIACOVSKY VÀ MỘT SỐ ỨNG DỤNG TRONG GIẢI TOÁN

Khóa luận tốt nghiệp toán học: BẤT ĐẲNG THỨC BERNOULLI, BẤT ĐẲNG THỨC BUNIACOVSKY VÀ MỘT SỐ ỨNG DỤNG TRONG GIẢI TOÁN

...   Áp dụng bất đẳng thức Cauchy cho 3 số không âm: 3 i x; 3 i y; 3 i z   i 1;2 ;3 ta có: 33 3 111 1 1 1 33 3 222 2 2 2 33 3 33 3 3 3 3 xxx x y z 3 xxx x y z 3 xxx x y z 3                  ...      3 3 3 3 3 3 3 3 3 1 2 n 1 2 n 1 2 n a a a b 3 b c c c          Chứng minh Đặt 3 3 3 3 1 2 n A a a a    , 3 3 3 3 1 2 n B b b b    , 3 3 3 3 1 2 n C c c c ... 3 3 3 1 2 3 3 3 3 1 2 3 3 3 3 1 2 3 x x x 1 y y y 1 z z z 1                 và bất đẳng thức cần chứng minh trở thành: 1 1 1 2 2 2 3 3 3 x y z x y z x y z 1   Áp dụng bất...

Ngày tải lên: 06/06/2014, 17:11

43 1,8K 7
CHUYÊN ĐỀ VỀ BẤT ĐẲNG THỨC DÙNG CHO HỌC SINH LỚP 9

CHUYÊN ĐỀ VỀ BẤT ĐẲNG THỨC DÙNG CHO HỌC SINH LỚP 9

... thơ, cánh cò không tự có, không tự hiện hữu bất di bất dịch như muôn vàn câu chữ của thi ca, nó phải bay ra từ một miền xa xôi lắm. Chế Lan Viên đã đánh thức cánh cò yên ngủ, gọi cò về với những ... dành cho con. Con có thể ngủ yên, có thể vui sướng cắp sách đến trường, có thể vững bước chắc trên đường đời song gió, tất cả vì đã có tình mẹ chở che, nâng bước con đi. Dù ở đâu, dù ở trong bất ... những khát khao mẹ ấp ủ bằng cả niềm tin. mẹ hỏi lòng và tự trả lời cho câu hỏi: mẹ muốn con làm thi sĩ, mang cái đẹp đến cho cuộc đời qua những vần thơ về mẹ, về con, về cuộc sống xung quanh...

Ngày tải lên: 12/07/2014, 09:00

5 651 0
Chương 3. Áp dụng giải bất đẳng thức và một số bài toán khác

Chương 3. Áp dụng giải bất đẳng thức và một số bài toán khác

... dụ 3. 2.2. Tìm giá trị nhỏ nhất của biểu thức : CBAP 3cos3cos3cos − + = Lời giải : Ta có : ( ) [ ] ( ) [ ] ( ) BABABAC +−=+−=+−= 3cos33cos3cos3cos ππ nên ( ) 1 2 3cos2 2 3cos 2 3cos23cos3cos3cos 2 −       + +       −       + =+++= BABABA BABAP ... 3. 3.5. 2 1coscoscos = ++ + + c b a CcBbAa 3. 3.6. 2 cos 2 cos 2 cos CBA abcmmm cba = 3. 3.7. 2 cos 2 cos 2 cos CBA abclll cba = 3. 3.8. S C ab B ca A bc 12 2 cot 2 cot 2 cot =++ 3. 3.9. ... sau : 3. 3.1. 4 3 coscoscoscoscoscos =++ ACCBBA 3. 3.2. CBACBA sinsinsin2sin2sin2sin + + = + + 3. 3 .3. CBA C B A tantantan 2 1 2 3 2 sin 1 2 sin 1 2 sin 1 +=++ 3. 3.4. 2 tan 2 tan 2 tan cotcotcot 222 2 222 CBA cba CBA cba =         ++ ++ ...

Ngày tải lên: 16/03/2014, 14:54

11 558 2

Bạn có muốn tìm thêm với từ khóa:

w