(Luận văn thạc sĩ) bổ đề schwarz trên biên của hình cầu đơn vị trong cn và một số ứng dụng

43 10 0
(Luận văn thạc sĩ) bổ đề schwarz trên biên của hình cầu đơn vị trong cn và một số ứng dụng

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM –––––––––––––––––––– TRẦN THỊ THÙY LINH BỔ ĐỀ SCHWARZ TRÊN BIÊN CỦA HÌNH CẦU ĐƠN VỊ TRONG n VÀ MỘT SỐ ỨNG DỤNG LUẬN VĂN THẠC SĨ TOÁN HỌC THÁI NGUYÊN - 2020 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM –––––––––––––––––––– TRẦN THỊ THÙY LINH BỔ ĐỀ SCHWARZ TRÊN BIÊN CỦA HÌNH CẦU ĐƠN VỊ TRONG n VÀ MỘT SỐ ỨNG DỤNG Ngành: Tốn giải tích Mã số: 8460102 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học: TS TRẦN HUỆ MINH THÁI NGUYÊN - 2020 LỜI CAM ĐOAN Em xin cam đoan cơng trình nghiên cứu riêng em hưỡng dẫn TS Trần Huệ Minh Em khơng chép từ cơng trình khác Các tài liệu luận văn trung thực, em kế thừa phát huy thành khoa học nhà khoa học với biết ơn chân thành Thái Nguyên, tháng năm 2020 Người viết luận văn Trần Thị Thùy Linh Xác nhận Khoa chuyên môn Xác nhận Người hướng dẫn khoa học i LỜI CẢM ƠN Trước trình bày nội dung luận văn, em xin bày tỏ lòng biết ơn sâu sắc tới Tiến sĩ Trần Huệ Minh, người tận tình hướng dẫn truyền đạt kinh nghiệm học tập, nghiên cứu khoa học để em hồn thành luận văn Em xin bày tỏ lòng biết ơn chân thành tới Phòng Đào tạo - Bộ phận Sau đại học, Ban chủ nhiệm Khoa Tốn, thầy giáo Trường Đại học Sư phạm - Đại học Thái Nguyên Viện Toán học giảng dạy tạo điều kiện thuận lợi cho em suốt trình học tập nghiên cứu khoa học Do vốn kiến thức khả nghiên cứu khoa học hạn chế nên luận văn em khơng tránh khỏi khiếm khuyết, em mong nhận đóng góp ý kiến thầy cô giáo bạn học viên để luận văn hoàn chỉnh Em xin chân thành cảm ơn ! Thái Nguyên, tháng năm 2020 Người viết luận văn Trần Thị Thùy Linh ii Mục lục Lời cam đoan i Lời cảm ơn Mục lục ii iii Mở đầu 1 Bổ đề Schwarz điểm biên đĩa đơn vị 1.1 Bổ đề Schwarz Bổ đề Schwarz biên 1.2 Các bất đẳng thức điểm biên hàm chỉnh hình đĩa đơn vị Bổ đề Schwarz biên hình cầu đơn vị Cn ứng dụng 14 2.1 Tổng quát bổ đề Schwarz cổ điển cho ánh xạ chỉnh hình hình cầu đơn vị Cn 14 2.2 Bổ đề Schwarz biên ánh xạ đa thức chỉnh hình 27 2.3 Một số áp dụng Bổ đề Schwarz biên 32 Kết luận 37 Tài liệu tham khảo 38 iii Mở đầu Lý chọn đề tài Như biết, Bổ đề Schwarz biên đóng vai trị quan trọng giải tích phức cổ điển, trở thành chủ đề nghiên cứu theo nhiều hướng nhà toán học giới S Krantz [6], D Chelst [2], R Osserman [12], M Jeong [5], Dựa Bổ đề Schwarz biên, T.Liu, G.Ren, S Gong W Zhang đạt kết nghiên cứu đột phá ánh xạ lồi song chỉnh hình chuẩn tắc ánh xạ tựa lồi miền khác ([4], [8]) Việc tổng quát hóa Bổ đề Schwarz biên lên trường hợp nhiều chiều áp dụng để có kết lý thuyết hàm hình học nhiều biến phức thu hút quan tâm nhiều nhà toán học, chẳng hạn năm 2015, T.Liu, J Wang, X Tang tổng qt hóa Bổ đề Schwarz biên hình cầu đơn vị Cn [9], Mục đích luận văn nghiên cứu, tìm hiểu trình bày lại số kết Bổ đề Schwarz biên số ứng dụng Nhiệm vụ nghiên cứu Hệ thống lại kết Bổ đề Schwarz điểm biên đĩa đơn vị điểm biên hình cầu đơn vị Cn với số ứng dụng Phương pháp nghiên cứu Sử dụng kết hợp phương pháp phân tích tổng hợp lý thuyết, phương pháp phân loại hệ thống hóa lý thuyết Bố cục luận văn Luận văn viết chủ yếu dựa tài liệu [5], [9], [10], [11] gồm 38 trang có phần mở đầu, chương nội dung, phần kết luận tài liệu tham khảo Cụ thể là: - Chương 1: Trình bày lại Bổ đề Schwarz Bổ đề Schwarz điểm biên đĩa đơn vị số bất đẳng thức điểm biên cho dạng khác hàm chỉnh hình đĩa đơn vị Từ tìm điều kiện để đạt dấu đẳng thức - Chương 2: Bổ đề Schwarz biên hình cầu đơn vị Cn ứng dụng Phần đầu chương trình bày kết tổng quát hóa Bổ đề Schwarz biên cổ điển cho ánh xạ chỉnh hình f hình cầu đơn vị Cn điểm biên z0 mà f (z0 ) = z0 điểm biên z0 mà f (z0 ) = ω0 ∈ ∂B n ; ω0 = z0 Phần tiếp sau trình bày tổng quát hóa Bổ đề Schwarz biên ánh xạ đa thức chỉnh hình hình cầu đơn vị Cn Phần cuối trình bày áp dụng Bổ đề Schwarz biên để chứng minh kết định lý biến dạng tổng quát cho ánh xạ hình song chỉnh hình chuẩn tắc hình cầu đơn vị Cn - Cuối phần kết luận trình bày tóm tắt kết đạt danh mục tài liệu tham khảo Chương Bổ đề Schwarz điểm biên đĩa đơn vị 1.1 Bổ đề Schwarz Bổ đề Schwarz biên Định lý 1.1.1 (Bổ đề Schwarz) Cho f : ∆ → ∆ hàm chỉnh hình đĩa đơn vị mở ∆ = {z ∈ C : |z| < 1} với f (0) = Khi (i) |f ′ (0)| ≤ (ii) |f (z)| ≤ |z| với z ∈ ∆, dấu đẳng thức (i) đạt (iii) f (z) = cz, với c số phức có mơđun Chứng minh Xét khai triển chuỗi lũy thừa f ∆ ∞ f (n) (0) cn z , ∀z ∈ ∆, cn = f (z) = n! n=0 n (1.1) Đặt ∞ cn z n − 1, ∀z ∈ ∆ (1.2) c0 = f (0) = 0, z.g (z) = f (z) (1.3) g (z) = n=1 Vì Nếu z ∈ ∆ ta lấy > r > |z| , theo ngun lý mơđun cực đại, f (ω) ≤ r r |ω|=r |g (z)| ≤ sup |g (ω)| = sup |ω|=r Cho r ↑ 1, ta có |g (z)| ≤ 1, ∀z ∈ ∆ (1.4) Từ (1.4) (1.3) cho ta (ii) Lấy z = (1.4) ý g (0) = c1 f ′ (0) , ta có (i) Nếu đẳng thức đạt (i) (1.4) |g| đạt cực đại ∆ 0, theo nguyên lý môđun cực đại g ∆ Nếu c số |c| = |g (0)| = |f ′ (0)| = ta có (iii) đạt : f (z) = zg (z) = cz Nếu đẳng thức (ii) đạt với z = 0, |g (z)| = (1.4) cho ta thấy |g| đạt cực đại ∆ z Do g số (iii) đạt Định lý 1.1.2 [12] (Bổ đề Schwarz biên) Cho f : ∆ → ∆ hàm chỉnh hình đĩa đơn vị ∆ = {z ∈ C : |z| < 1} Giả sử f (0) = điểm z0 tùy ý mà |z0 | = 1, f thác triển liên tục tới z0 , |f (z0 )| = f ′ (z0 ) tồn Thế |f ′ (z0 )| ≥ + |f ′ (0)| (1.5) Để chứng minh định lý này, trước tiên ta chứng minh bổ đề sau: Bổ đề 1.1.3 Cho f : ∆ → ∆ hàm chỉnh hình thỏa mãn f (0) = Khi ′ |ζ|+f (0) |f (ζ)| ≤ |ζ| 1+|f ′ (0)|.|ζ| với |ζ| < Chứng minh Đặt g (ζ) = f (ζ) ζ Theo Bổ đề Schwarz f phép quay |g (ζ)| < với |ζ| < Nếu f phép quay |f ′ (0)| = nên việc chứng minh bất đẳng thức tầm thường Do vậy, ta giả sử |g (ζ)| < với |ζ| < Sử dụng phép quay cần, ta giả thiết g (0) = f ′ (0) = a, a ∈ R ≤ a < Khi bất đẳng thức tương ứng với |g (ζ)| ≤ |ζ|+a 1+a|ζ| , với |ζ| < Ta suy khẳng định từ Bổ đề Schwarz Rõ ràng g ánh xạ a−r a+r đĩa ∆ (0, r), < r < vào đĩa có đường kính đoạn 1−ar , 1+ar Khi |ξ| = r, g (ζ) ≤ a+r 1+ar = |ζ|+a 1+a|ζ| Vậy khẳng định chứng minh, bổ đề chứng minh Bổ đề 1.1.4 Ta có lim ζj →z0 f (ζj )−c |ζj |−|z0 | 1−|f (ζj )| ζj →z0 1−|ζj | ≥ lim ≥ 1+|f ′ (0)| Chứng minh Rõ ràng f (ζ)−c |ζ|−|z0 | 1−|f (ζ)| 1−|ζ| , ≥ với |c| = 1, |z0 | = Sử dụng tính bị chặn |f (ζ)| Bổ đề 1.1.3, ta có điều phải chứng minh Ta chứng minh Định lí 1.1.2 Chứng minh Lấy ζj Bổ đề 1.1.4 thỏa mãn ζj = tj , với tj → Cho j → +∞ vế trái dần đến f ′ (z0 ) Vì ta có |f ′ (z0 )| ≥ 1+|f ′ (0)| Nhận xét Từ (1.5) ta có |f ′ (z0 )| ≥ (1.6) Đẳng thức (1.6) đạt f (z) = reiθ , với θ ∈ R Nếu hàm f có tính chất f (0) = f ′ (0) = = f (n−1) (0) = 0, n ∈ N f ′ (z0 ) ≥ n (1.7) Đẳng thức (1.7) đạt f (z) = z n eiθ , với θ ∈ R 1.2 Các bất đẳng thức điểm biên hàm chỉnh hình đĩa đơn vị Trong phần ta trình bày số bất đẳng thức điểm biên cho dạng khác hàm chỉnh hình tìm điều kiện để đạt dấu đẳng thức Gọi f hàm chỉnh hình đĩa đơn vị thỏa mãn f (0) = 1, |f (z) − ε| < ε Khi − 2ℜω0 ′ Jf (z0 )z0 t + O(t2 ) ≤ − 2t + t2 Suy ra, từ (2.15) ta có λ+ O t2 t ≥1− t Cho t → λ ≥ Nếu a = f (0) = 0, từ Bổ đề 2.1.4 suy ϕa (ω0 ) ∈ ∂B n Khi tồn ma trận unita U bậc n cho U ϕa (ω0 ) = ω0 Lấy g = U ϕa ◦ f g : B n → B n ánh xạ chỉnh hình g chỉnh hình z0 với g(0) = g (z0 ) = ω0 Chứng minh tồn µ ∈ R cho ′ Jg (z0 ) ω0 = µz0 với µ ≥ (2.16) Tương tự chứng minh trường hợp Định lý 2.1.6, ta có ′ ′ ′ ′ ′ ′ Jg (z0 ) ω0 = Jf (z0 ) Jϕa (ω0 ) U ω0 = Jf (z0 ) Jϕa (ω0 ) ϕa (ω0 ) ′ 1− a ω0 = Jf (z0 ) |1 − a′ ω0 |2 1− a = λ z0 |1 − a′ ω0 |2 Từ điều từ (2.16) ta có |1 − a′ ω0 |2 |1 − a′ ω0 |2 µ≥ > λ= 1− a 1− a (1,0) (2) Với α ∈ Tz0 Từ Bổ đề 2.1.3 ta có Jf (tz0 ) α − f (tz0 ) (∂B n ) ∩ ∂B n t ∈ (0, 1) , đặt z = tz0 ∈ B n ′ + f (tz0 ) Jf (tz0 ) α − f (tz0 ) 2 ≤ − t2 Tương tự chứng minh bước Định lý 2.1.6, ta có √ Jf (z0 ) α ≤ λ (3) Lấy ma trận unita bậc n cho U ω0 = U f (z0 ) = z0 24 Đặt g = U f, g : B n → B n ánh xạ chỉnh hình, g chỉnh hình z0 với g (z0 ) = z0 Giả sử λ, µ2 , , µn tất giá trị riêng Jg (z0 ) = U Jf (z0 ) Theo Định lý 2.1.6, ta có ′ ′ U Jf (z0 ) z0 = Jg (z0 ) z0 = λz0 Suy ′ ′ ′ λz0 = Jf (z0 ) U z0 = Jf (z0 ) ω0 = λz0 Điều nghĩa λ = λ Hơn nữa, theo Định lý 2.1.6 ta có √ |µj | ≤ λ = λ, j = 2, , n Do vậy, |det Jf (z0 )| = |det Jg (z0 )| = λµ2 µn ≤ λ n+1 (4) Giả sử z0 , α2 , , αn sở trực chuẩn Cn , đặt  a a12 a1n  11 a21 a22 a2n  Jf (z0 ) (z0 , α2 , , αn ) = (z0 , α2 , , αn )  an1 an2 ann Thế trJf (z0 ) = a11 +a22 + +ann = z0 ′ Jf (z0 ) z0 +α2 ′ Jf (z0 ) α2 + +αn ′ Jf (z0 ) αn Do vậy, từ (2) ta có ′ |trJf (z0 )| ≤ |z0 Jf (z0 ) z0 | + √ λ (n − 1) ′ √ (5) Lấy f (z) = rz1m − r2 z1 , r ∈ (0, 1) đủ nhỏ m số nguyên dương đủ lớn, f (z) = r2 |z1 |2m + − r2 |z1 |2 < với z ∈ B f : B → B chỉnh hình Đặt z0 = (1, 0)′ ∈ ∂B Khi ′ ω0 = f (z0 ) = r, − r2 ∈ ∂B Bằng tính tốn đơn giản ta có Jf (z0 ) = √ rm 1−r ω0 ′ Jf (z0 ) = r2 m + − r2 , = r2 m + − r2 z0 ′ 25 Điều suy λ = r2m + − r2 , z0 ′ Jf (z0 ) z0 = (1, 0) Do √ rm 1−r = rm rm |z0 ′ Jf (z0 ) z0 | = → λ r m + (1 − r2 ) r m → ∞ Chú ý số dương r bé tùy ý Khi thể lấy lớn tùy ý Vì vậy, √ |trJf (z0 )| ≤ λ + λ (n − 1) |z0 ′ Jf (z0 )z0 | λ có khơng đạt Cuối cùng, ta chứng minh bất đẳng thức từ (1) đến (3) nhọn Lấy a = a z0 ∈ B n f (z) = −U ϕa (z) , U ma trận unita cấp n thỏa mãn U z0 = ω0 Theo Bổ đề 2.1.4, f (0) = − a ω0 , f (z0 ) = ω0 U [sIn + (1 − s) z0 z0 ′ ] [In + a z0 z0 ′ ] 1− a U [sIn + (1 − s + a ) z0 z0 ′ ] = 1− a Jf (z0 ) = Suy ′ λz0 = Jf (z0 ) ω0 = 1+ a [sIn + (1 − s + a ) z0 z0 ′ ] z0 = z0 1− a 1− a Tức λ= Trong đó, 1+ a 1− a ′ |1 − f (0) ω0 |2 1+ a (1 + a )2 = = = λ − ||f (0)||2 1− a 1− a 26 Điều bất đẳng thức (1) nhọn Hơn nữa, với α ∈ (1,0) Tz0 (∂B n ) ∩ ∂B n , ta có s = Jf (z0 ) α = 1− a √ 1+ a = λ 1− a |det Jf (z0 )| = s 1− a det = 1+ a 1− a = 1+ a 1− a = λ n+1 In + n 1−s+ a z0 z0 ′ s 1+ a s n+1 Điều có nghĩa bất đẳng thức (2), (3) nhọn Nếu f : B n → B n ánh xạ đa thức chỉnh hình bậc m, ta có kết sau: 2.2 Bổ đề Schwarz biên ánh xạ đa thức chỉnh hình Định lý 2.2.1 [9] Cho f : B n → B n ánh xạ đa thức chỉnh hình bậc m, lấy z0 ∈ ∂B n với f (z0 ) = ω0 ∈ ∂B n , m số nguyên dương Ta có khẳng định sau: ′ (1) Jf (z0 ) ω0 = mz0 Jf (z0 ) z0 = mω0 √ (1,0) (2) Jf (z0 ) α ≤ m với α ∈ Tz0 (∂B n ) ∩ ∂B n (3) Có sở trực chuẩn z0 , β2 , , βn Cn cho  m ′  Jf (z0 ) Jf (z0 ) (z0 , β2 , , βn ) = (z0 , β2 , , βn )  ′ µ2 m2 , µ2 , , µn giá trị riêng Jf (z0 ) Jf (z0 ) Ngoài 27  0   , µn ≤ µj ≤ m |det Jf (z0 )| ≤ m n+1 , j = 2, , n (4) Với sở trực chuẩn z0 , α2 , , αn Cn trJf (z0 ) = mz0 ′ ω0 + α2 ′ Jf (z0 ) α2 + + αn ′ Jf (z0 ) αn √ m |trJf (z0 )| ≤ + (n − 1) m m (5) Với giá trị riêng λ1 , , λn Jf (z0 ) , ta có khẳng định sau: ≤ max |λj | ≤ m, 1≤j≤n √ ≤ |λj | ≤ 1≤j≤n m n+1 n Hơn bất đẳng thức từ (2) đến (5) nhọn Chứng minh Vì f ánh xạ đa thức chỉnh hình bậc m, ta có f (tz0 ) = tm f (z0 ) = tm ω0 với t ∈ R Khi đạo hàm f (tz0 ) t = Jf (z0 ) z0 = mω0 Tức ω0 ′ Jf (z0 ) z0 = m Từ (1) Định lý 2.1.7, ta có ′ Jf (z0 ) ω0 = mz0 Vậy (1) chứng minh Từ Định lý 2.1.7, dễ dàng kiểm tra (2) (4) Ta chứng minh (3) sau: Do ′ ′ Jf (z0 ) Jf (z0 ) z0 = Jf (z0 ) mω0 = m2 z0 ′ (2.17) Suy m2 giá trị riêng Jf (z0 ) Jf (z0 ) z0 véctơ riêng (1,0) (1,0) tương ứng với m2 Vì Jf (z0 ) α ∈ Tω0 (∂B n ) với α ∈ Tz0 (∂B n ), ta có ′ z0 ′ Jf (z0 ) Jf (z0 ) α = mω0 ′ Jf (z0 ) α = Suy ′ (∂B n ) Jf (z0 ) Jf (z0 ) α ∈ Tz(1,0) 28 (1,0) Điều có nghĩa Tz0 (∂B n ) không gian bất biến ′ (1,0) Jf (z0 ) Jf (z0 ) Do vậy, tồn sở trực chuẩn β2 , , βn Tz0 (∂B n ) cho   µ2 0  ′  µ3 Jf (z0 ) Jf (z0 ) (β2 , , βn ) = (β2 , , βn )   0 µn Từ đó, với (2) ta ′ ′ ≤ µj = βj Jf (z0 ) Jf (z0 ) βj = Jf (z0 ) βj Mặt khác, từ (2.17) ta có ≤ m, j = 2, , m  m2  µ2 ′ 0 Jf (z0 ) Jf (z0 ) (z0 , β2 , , βn ) = (z0 , β2 , , βn )   0 Từ suy Vậy (3) chứng minh |det Jf (z0 )| ≤ m n+1  0 0  µ3   µn Tiếp theo, ta chứng minh (5) Với giá trị riêng λj Jf (z0 ), j = 1, , n Giả sử γj véctơ riêng đơn vị ứng với λj Từ (3) suy ′ |λj |2 = λj γj ′ λj γj = γj ′ Jf (z0 ) Jf (z0 ) γj ≤ m2 Do đó, |λj | ≤ m Điều suy ≤ max |λj | ≤ m 1≤j≤n n n ≤ |λj | ≤ (|λ1 | |λ2 | |λn |) = |det Jf (z0 )| ≤ 1≤j≤n √ m n+1 n Vậy (5) chứng minh Cuối cùng, ta chứng minh bất đẳng thức từ (2) đến (5) nhọn Khơng tính tổng qt, ta giả sử m ≥ Lấy √ √ m−1 √ m−1 ′ mz1 z2 , mz1 z3 mz1m−1 zn , z1m f (z) = Với z ∈ B n , ta có f (z) = m|z1 |2(m−1) |z2 |2 + |z3 |2 + + |zn |2 + |z1 |2m = m|z1 |2(m−1) − |z1 |2 + |z1 |2m = m|z1 |2(m−1) − (m − 1) |z1 |2m 29 Dễ thấy g (x) = mxm−1 − (m − 1) xm hàm tăng [0; 1] Do g (x) ≤ g (1) = 1, với x ∈ [0; 1] Suy f : B n → B n ánh xạ đa thức chỉnh hình bậc m Lấy z0 = (1, 0, , 0)′ ∈ ∂B n Thì ω0 = f (z0 ) = (1, 0, , 0, 1)′ ∈ ∂B n √ mIn−1 Jf (z0 ) = m (1,0) Với α ∈ Tz0 mãn Bằng tính tốn ta có (∂B n ) ∩ ∂B n , dễ thấy α = (0, b2 , , bn )′ thỏa |b2 |2 + |b3 |2 + + |bn |2 = Jf (z0 ) α = √ m(b2 , , bn , 0)′ Suy Jf (z0 ) α = √ m Vậy bất đẳng thức (2) nhọn Chú ý ′ Jf (z0 ) Jf (z0 ) = m √ mIn−1 0 m √ mIn−1 = m2 0 mIn−1 Do |det Jf (z0 )| = m n+1 |µj | = m với j = n Lấy g (z) = (z1m , 0, , 0)′ Dễ kiểm tra |µj | = với j = n Do bất đẳng thức (3) nhọn Lấy √ √ √ ′ f (z) = z1m , mz1m−1 z2 , mz1m−1 z3 , , mz1m−1 zn Khi f : B n → B n ánh xạ đa thức chỉnh hình bậc m Khơng tính tổng qt, ta giả sử m ≥ Đặt z0 = (1, 0, , 0)′ ∈ ∂B n Thế ω0 = f (z0 ) = z0 ,   m √0 0  m   , Jf (z0 ) =  √ 0 m √ m |trJf (z0 )| = + (n − 1) m m 30 Do bất đẳng thức (4) nhọn Hơn điều max |λj | ≤ m nhọn (5) 1≤j≤n Cuối ta chứng minh bất đẳng thức (5) nhọn Lấy g (z) = (0, , 0, z1m )′ Dễ thấy bất đẳng thức ≤ max |λj | ≤ |λj | 1

Ngày đăng: 10/06/2021, 08:52

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan