Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 17 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
17
Dung lượng
0,96 MB
Nội dung
CHUYÊN ĐỀ CỰC TRỊ HÀM ẨN Tác giả: Nguyễn Minh Nhiên Nhóm Giáo viên Tốn tiếp sức Chinh phục kỳ thi THPT năm 2020 Trong đề thi THPT quốc gia năm gần hay đề tham khảo thi tốt nghiệp THPT năm 2020, toán xác định cực trị hàm số cho bảng biến thiên, đồ thị hay đạo hàm (ta gọi cực trị hàm ẩn) thường gây khó khăn cho nhiều thí sinh Bài viết giúp em có tìm hướng tiếp cận đơn giản để giải tốn thật dễ dàng Dựa vào biến thiên đồ thị hàm f x xác định số lần đổi dấu f x Nếu xác định số lần đổi dấu từ sang f x ta xác định số điểm cực đại f x ; số lần đổi dấu từ sang f x ta xác định số điểm cực tiểu f x * Lỗi thường gặp: Đếm thừa điểm mà qua đạo hàm khơng đổi dấu Câu 1: (Đề tham khảo thi tốt nghiệp THPT năm 2020 lần 1) Cho hàm số f x có bảng xét dấu f x sau: x y 1 Số điểm cực trị hàm số cho A B C Lời giải D Chọn B Dễ thấy, f x lần đổi dấu từ sang lần đổi dấu từ sang nên hàm số có hai điểm cực trị Cực trị hàm g x f u x Để xác định số cực trị hàm g x f u x ta thường hướng đến việc xét dấu g x u x f u x Nếu g x đổi dấu x TXĐ g x x điểm cực trị Trường hợp đơn giản f x , u x hàm đa thức nghiệm đơn nghiệm bội lẻ điểm cực trị g x * Lỗi thường gặp: Nhầm lẫn nghiệm chẵn nghiệm bội lẻ Câu 2: (Đề tham khảo TNTHPT lần năm 2020) Cho hàm số bậc bốn y f x có đồ thị hình vẽ Số điểm cực trị hàm số g x f x 3x A C y B D 11 Lời giải O Chọn C Từ đồ thị suy hàm số y f x có điểm cực trị x1 x2 x Xét hàm số g x f x 3x , ta có g x 3x 6x f x 3x x 3x 6x g x x 2 f x x x 3x x i , i 1;2; Ta có đồ thị hàm số y x 3x y x=x3 Ta có nhận xét phương trình x 3x x có nghiệm; x=x2 phương trình x 3x x có nghiệm; phương trình x 3x x có nghiệm nghiệm đơi phân biệt, khác 0; 2 Như vậy, g x có nghiệm đơn phân biệt -3 -2 O Do hàm số g x có điểm cực trị Câu 3: Cho f x đa thức bậc hàm số y f x có đồ thị đường cong hình vẽ y -3 -2 y=f'(x) Số điểm cực đại hàm số g x f x 3x A Chọn B B O x -4 C Lời giải x D x x=x1 3x (1) Ta có g x 3x f x 3x , g x f ' x 3x (2) (1) x 1 x 3x 2 Dựa vào đồ thị cho (2) x 3x x Trong phương trình x 3x 2 x 2 Cịn phương trình: x 3x có nghiệm phân biệt: 2 x 1 , 1 x x3 Ta có bảng biến thiên hàm số g x Vậy hàm số g x có điểm cực đại Cực trị hàm g x f u x v x g x u x f u x v x Để xác định số cực trị hàm g x f u x v x ta cần xét dấu + Hướng 1: Xét dấu g x dựa vào đồ thị hai hàm y u x f u x ; y v x + Hướng 2: Đưa u x f u x v x dạng tích * Lỗi thường gặp: Xác định sai dấu nhầm lẫn nghiệm chẵn nghiệm bội lẻ Câu 4: Cho hàm số y f (x ) có đạo hàm liên tục Đồ thị hàm số y f (x ) hình vẽ Số điểm cực trị hàm số y f (x ) 5x A B C D y y=f'(x) -1 O x Lời giải y Chọn C Ta có y f (x ) 5x Suy y f (x ) y=5 y=f'(x) Dựa vào đồ thị ta có y f (x ) cắt đường thẳng y điểm x ( x nghiệm đơn phương trình f (x ) ) Vậy hàm số y f (x ) 5x có điểm cực trị Câu 5: Cho hàm số y f x hàm đa thức bậc bốn có đồ thị hàm số y f x hình bên vẽ Hàm số g (x ) f (x ) cực đại điểm nào? A x C x -1 O x3 x x đạt y B x 1 D x Lời giải Chọn A Ta có g(x ) xác định g (x ) f (x ) (x 1)2 Số nghiệm phương trình g (x ) số giao điểm hai đồ thị y f (x ) parabol y (x 1)2 ; g (x ) đồ thị y f (x ) nằm -1 Dựa vào biến đổi đồ thị Cho hàm số y f (x ) có đồ thị C a Khi + Tịnh tiến C lên a đơn vị ta đồ thị hàm số y f x a + Tịnh tiến C xuống a đơn vị ta đồ thị hàm số y f x a + Tịnh tiến C sang trái a đơn vị ta đồ thị hàm số y f x a + Tịnh tiến C sang phải a đơn vị ta đồ thị hàm số y f x a + Lấy đối xứng C qua Ox ta đồ thị hàm số y f x + Lấy đối xứng C qua Oy ta đồ thị hàm số y f x * Lỗi thường gặp: Biến đổi đồ thị sai O x -2 y parabol y (x 1)2 ngược lại x Từ đồ thị suy g (x ) x g (x ) đổi dấu từ dương sang x âm qua x Do hàm số đạt cực đại x x0 x 1 -1 O -2 x * Đặc biệt f x hàm đa thức 1) Với hàm y f x (có thể mở rộng với hàm y f x m ) Số điểm cực trị đồ thị hàm số y f x tổng số giao điểm đồ thị hàm số y f x với Ox số điểm cực trị không thuộc Ox đồ thị hàm số y f x 2) Với hàm y f x (có thể mở rộng với hàm y f x m ) Số điểm cực trị hàm số 2k k số điểm cực trị dương Câu 6: (Đề thi thử lần - Sở GDĐT Hà Nội năm 2020) Cho hàm số y ax bx cx d với a có đồ thị hình vẽ Điểm cực đại đồ y thị hàm số y f 4 x A A 5; 4 B B 3;2 C C 3; 4 D D 5; 8 -1 Lời giải Chọn A Từ đồ thị hàm số f x ta thực phép biến đổi x O -1 f x f x f 4 x f 4 x Suy đồ thị hàm số y f 4 x có điểm cực đại A 5; 4 y y -1 O y=f(x) x y -1 -1 y=f(-x) O -1 x O y y=f(4-x) y=f(4-x)+1 -1 O Câu 7: Cho y f x hàm đa thức bậc bốn có đồ thị hàm số y f x hình bên vẽ Hỏi hàm số y f x có điểm cực trị? A C B D Lời giải Chọn A Từ đồ thị hàm số f x ta thấy f x có hai cực trị dương nên hàm y số y f x có cực trị O x Câu 8: (Đề thi thử lần – Chuyên ĐH Vinh lần năm 2020) Cho f x ax bx cx dx e ae 0 Đồ thị hàm số y f x hình vẽ Hàm số y f x x có điểm cực tiểu? A C B D -1 O - Ta có g x f x 2x ; g x f x Đồ thị hàm số y f x cắt đường thẳng y hoành độ 1; 0;2 g x g x 1 g 1 x x điểm có 2 0 y y=f'(x) y= -1 O -1 2 g 2 g 0 Từ đồ thị f x a mà ae e g 0 f 0 4.e Nhận thấy g x có điểm cực tiểu đồ thị hàm số y g x cắt trục hoành hai điểm phân biệt nên hàm số y g x có điểm cực tiểu x Bảng biến thiên g x y=f'(x) Lời giải Chọn A Xét hàm số g x f x x x y x x BÀI TẬP TỰ LUYỆN y Câu 1: Cho y f x hàm đa thức bậc có đồ thị hàm y f x hình vẽ Số điểm cực tiểu hàm số y f x -1 A B C D Câu 2: Cho y f x hàm đa thức bậc có đồ thị hàm y f x O hình vẽ Số điểm cực tiểu hàm số y f x x -4 y x -1 O Số điể m cực tri ̣của hàm số y f x là A B Câu 3: Cho hàm số f x có bảng biến thiên sau x y 1 y 0 C D 2 Hàm số y f 3 x đạt cực đại A x 1 B x C x D x Câu 4: Cho hàm số y f x ax bx cx d có điểm cực 2 a 3 có đồ thị đường cong hình vẽ Đặt g x f f x Số điểm cực trị hàm số trị 0;a A C 10 B D y y=f(x) O 2a x Câu 5: Cho hàm số y f x ax bx cx dx e Biết hàm số y f x liên tục có đồ thị hình vẽ y bên Hỏi hàm số g x f 2x x có điểm cực đại? A C y=f'(x) B D -4 Câu 6: Cho f x x ax bx cx d hàm số y f x có đồ thị y đường cong hình vẽ Số điểm cực trị hàm số y f f x A B 11 C D Câu 7: Cho y f x hàm đa thức bậc có đồ thị hàm số -1 O x y y f x hình vẽ Đặt g x f x m Có giá x O y=f'(x) trị nguyên tham số m để hàm số g x có điểm cực trị? A B C D Vô số Câu 8: Cho hàm số y f x có đạo hàm đến cấp hai -3 f 0 0; f x , x Biết hàm số y f x có đồ thị hình vẽ Hàm số g x f x mx , với m tham số dương, có nhiều điểm cực trị? A C B D -1 O y x y=f'(x) O x Câu 9: Cho hàm số y f x hàm đa thức bậc bốn thỏa mãn f 0 f 2 Biết hàm số g x f x A C y f x y có đồ thị hình vẽ Hàm số x4 2x có điểm cực trị? 1 O B D Câu 10: Cho hàm số y f x có đạo hàm đồ thị hàm số y f x cắt trục hoành 4 a 1;1 b ; c có dạng 3 hình vẽ bên Có giá trị ngun m để hàm số y f x m có điểm điểm có hoành độ 3; 2;a;b; 3; c;5 với cực trị? y -3 -2 A B a O b C c x D Vô số x ĐÁP ÁN Câu 1: Cho y f x hàm đa thức bậc có đồ thị hàm y f x hình vẽ Số điểm cực tiểu hàm số y f x B D A C Lời giải y -1 O -4 Chọn A Từ đồ thị hàm số y f x ta thấy đạo hàm f x đổi dấu từ sang lần Vậy hàm số y f x có điểm cực tiểu Câu 2: Cho y f x hàm đa thức bậc có đồ thị hàm y f x hình vẽ y Số điểm cực tiểu hàm số y f x B A x -1 O C Lời giải D Chọn B Từ đồ thi ̣hàm số y f x suy f x 0, x Do đó, hàm sớ y f x khơng có cực tri.̣ Câu 3: Cho hàm số f x có bảng biến thiên sau x y 1 y 2 Hàm số y f 3 x đạt cực đại A x 2 0 B x C x 3 Lời giải Chọn B Thực biến đổi f x f x f 3 x D x x Điểm cực đại f x 1;2 Điểm cực đại f x 1; 2 Điểm cực đại f 3 x 4;1 Câu 4: Cho hàm số y f x ax bx cx d có điểm cực trị 0;a 2 a 3 có đồ thị đường cong hình vẽ y y=f(x) O 2a Đặt g x f f x Số điểm cực trị hàm số A B x Lời giải C 10 D Chọn B g x f f x f x y f f x g x f f x f x f x f x f x a , a x x a f x có nghiệm đơn phân biệt x , x , x khác a y=f(x) y=a O 2a Vì a nên f x a có nghiệm đơn phân biệt x , x , x khác x , x , x , , a Suy g x có nghiệm đơn phân biệt Do hàm số g x có điểm cực trị Câu 5: Cho hàm số y f x ax bx cx dx e Biết hàm số y f x liên tục có đồ thị hình vẽ bên Hỏi hàm số g x f 2x x có điểm cực đại? x y y=f'(x) A B Chọn C Ta có y 2 2x .f 2x x x 2x f 2 2x g x x O -4 C Lời giải x 1 2x x 4 0 2x x 2x x 1 | | D x 1 x 1 0 Suy hàm số có cực đại Câu 6: Cho f x x ax bx cx d hàm số y f x có đồ thị đường cong hình vẽ y -1 O Số điểm cực trị hàm số y f f x A B 11 x C Lời giải D Chọn A Từ đồ thị giả thiết suy f x x x x x f x 3x Ta có g x f f x f f x f x x x x 3 x 3x x x 1x 1 x x x x 3x x x x x x x g x x a ( 0, 76) x x x b b 1, 32 x x 3x x Do đó, hàm số g x có điểm cực trị Câu 7: Cho y f x hàm đa thức bậc có đồ thị hàm số y f x hình vẽ Đặt g x f x m Có giá trị nguyên tham số m để hàm số g x có điểm cực trị? y -3 A -1 O B y=f'(x) x C Lời giải D Vô số Chọn A f x m , x Ta có g x f x m f x m , x Do hàm số y f x xác định Hàm số g x xác định Và ta lại có g x f x m g x Hàm số g x hàm số chẵn Đồ thị hàm số y g x đối xứng qua trục Oy Hàm số y g x có điểm cực trị Hàm số y g x có điểm cực trị dương, điểm cực trị âm điểm cực trị x x Dựa vào đồ thị hàm số y f x , ta có: f x x x 3 1 2 5 Xét khoảng 0; , ta g x f x m + Ta có g x f x m x m 3 x m x m 1 x m + g x x m x m x m x m + Nhận thấy m m m m m m Theo yêu cầu toán m m 3; 2 m Câu 8: Cho hàm số y f x có đạo hàm đến cấp hai f 0 0; f x , x Biết hàm số y f x có đồ thị hình vẽ Hàm số g x f x mx , với m tham số dương, có nhiều điểm cực trị? y y=f'(x) O A B 2 x C Lời giải D Chọn D Từ đồ thị hàm số y f x suy f x 0, x 0; Do đó, f x 0, x 0; Xét hàm số h x f x mx ; h x 2x f x m Với x , h x Phương trình h x vơ nghiệm Với x ta có h x f x 4x f x f x 2x Từ đồ thị hàm số y f x ta thấy với x , đồ thị hàm số y f x nằm đường thẳng y x 2x 0, x h x 0, x hay hàm số y h x đồng biến 0; lim h x nên phương trình x h x có nghiệm x 0; Bảng biến thiên x y y x0 y=f'(x) Do đó, f x Mà h 0 m y 1 O x h x Khi phương trình h x có nghiệm phân biệt Đồng thời hàm số y h x đạt cực tiểu x x , giá trị cực tiểu h x Vậy hàm số y h x có điểm cực trị Câu 9: Cho hàm số y f x hàm đa thức bậc bốn thỏa mãn f 0 f 2 Biết hàm số g x f x A C y f x có đồ thị hình x 2x có điểm cực trị? B D Lời giải Chọn A Xét hàm số h x f x x4 2x ; h x 2x f x 2x 4x 2x f x x 2 vẽ Hàm số y O x y Từ đồ thị hàm số y f x hàm số y x suy f x x 0, x 2; f x x 0, x ;2 Do đó, f x x x x Ta có bảng biến thiên x g x O 1 g x 0 y=f'(x) f 0 f 2 f 2 Từ giả thiết f 0 f 2 suy g x cắt trục hoành điểm phân biệt hàm số g x có điểm cực trị hàm số h x g x có điểm cực trị Câu 10: Cho hàm số y f x có đạo hàm đồ thị hàm số y f x cắt trục hoành 4 a 1;1 b ; c có dạng 3 hình vẽ bên Có giá trị nguyên m để hàm số y f x m có điểm điểm có hồnh độ 3; 2;a;b; 3; c;5 với cực trị? y -3 -2 A Chọn B B a O b Lời giải C c x D Vơ số x y=2-x Từ hình vẽ ta thấy hàm số y f x đạt cực trị điểm 3; 2;a;b; c;5 Xét hàm số y g x f x m g x 2x x f x m Khi đó, để xác định số điểm cực trị hàm số y g x ta cần xác định số nghiệm hệ x 2 x m 3; 2; a;b; c; x m m a m b m c m m x ; ; ; ; ; 2 2 2 Đặt m m a m b m c m m8 x1 ; x2 ;x3 ;x4 ;x5 ; x6 2 2 2 Ta có x x x x x x Với i 1;2; ;7 Nếu x i phương trình x x i có hai nghiệm phân biệt x x i , dẫn đến x x i hai điểm cực trị hàm số y g x Nếu x i phương trình x x i có x , dẫn đến x điểm cực trị hàm số y g x Nếu x i phương trình x x i vơ nghiệm Do đó, hàm số y g x có điểm cực trị a m 0 x3 x4 a m b 1 m b m Vậy có giá trị nguyên m thỏa mãn 2; 3; ... thị hàm số y f x với Ox số điểm cực trị không thuộc Ox đồ thị hàm số y f x 2) Với hàm y f x (có thể mở rộng với hàm y f x m ) Số điểm cực trị hàm số 2k k số điểm cực trị. .. xứng qua trục Oy Hàm số y g x có điểm cực trị Hàm số y g x có điểm cực trị dương, điểm cực trị âm điểm cực trị x x Dựa vào đồ thị hàm số y f x , ta có: f x ... thời hàm số y h x đạt cực tiểu x x , giá trị cực tiểu h x Vậy hàm số y h x có điểm cực trị Câu 9: Cho hàm số y f x hàm đa thức bậc bốn thỏa mãn f 0 f 2 Biết hàm