Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 21 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
21
Dung lượng
442,5 KB
Nội dung
SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HỐ TRƯỜNG THPT THẠCH THÀNH SÁNG KIẾN KINHNGHIỆMMỘTVÀIKINHNGHIỆMĐƯACÁCBÀI TỐN CĨ NỘIDUNGTHỰCTIỄNVÀLIÊNMƠNVÀODẠYCHƯƠNGPHƯƠNGTRÌNH,HỆPHƯƠNGTRÌNHĐẠISỐ10 – THPT Người thực hiện: Ngơ Thị Dun Chức vụ: Giáo viên SKKN thuộc mơn: Tốn học THANH HỐ NĂM 2016 I MỞ ĐẦU Lý chọn đề tài Giáo dục Việt Nam tập trung đổi mới, hướng tới giáo dục tiến bộ, đại ngang tầm với nước khu vực tồn giới Mục tiêu giáo dục kỉ 21 học để biết, học để làm, học để chung sống, học để khẳng định Chính vai trò tốn cónộidungthực tế dạy học tốn cần thiết Tốn học cóvai trò quan trọng khơng phải ngẫu nhiên mà liênhệ thường xun với thực tiễn, lấy thựctiễn làm động lực phát triển mục tiêu phục vụ cuối Tốn học có nguồn gốc từ thựctiễn lao động sản xuất người ngược lại tốn học cơng cụ đắc lực giúp người chinh phục khám phá giới tự nhiên Để đáp ứng đòi hỏi cao kinh tế tri thức phát triển khoa học từ ngồi ghế nhà trường phải dạy cho học sinh chủ động chiếm lĩnh tri thức thơng qua trải nghiệmthực tế, gắn học với thực tế sống làm cho giảng thêm sinh động, lí thú Qua tạo người lao động tự chủ, động, sáng tạo có lực để đáp ứng u cầu nguồn lực nhằm thúcđẩy cho mục tiêu phát triển kinh tế - xã hội, xây dựng bảo vệ Tổ quốc Chính dạy học tốn trường THPT phải ln gắn bó mật thiết với thựctiễn đời sống Tuy nhiên thựctiễndạy học trường THPT nhìn chung tập chung rèn luyện cho học sinh vận dụng trí thức học tốn kỹ vận dụng tư tri thứcnộimơn tốn chủ yếu kĩ vận dụng tri thức tốn học vàomơn khác, vào đời sống thựctiễn chưa ý mức thường xun Những tốn cónộidungliênhệ trực tiếp với đời sống lao động sản xuất trình bày cách hạn chế chươngtrình tốn phổ thơng Như vậy, giảng dạy tốn muốn tăng cường rèn luyện khả ý thức ứng dụng tốn học cho học sinh thiết phải ý mở rộng phạm vi ứng dụng, ứng dụngvàothựctiễn cần đặc biệt ý thường xun, qua góp phần tăng cường thực hành gắn với thựctiễn làm cho tốn học khơng trừu tượng nhàm chán Học sinh biết vận dụng kiến thức học để giải trực tiếp số vấn đề sống ngược lại, qua làm bật ngun lý: “ Học đơi với hành, giáo dục kết hợp với lao động sản xuất, lý luận gắn với thực tiễn, giáo dục nhà trường kết hợp với giáo dục gia đình giáo dục xã hội ” Chính tơi chọn đề tài: “ Mộtvàikinhnghiệmđưa tốn cónộidungthựctiễnliênmơnvàodạychươngphươngtrình,hệphươngtrìnhĐạisố10 – THPT ” Mục đích nghiên cứu Mục đích nghiên cứu SKKN làm sáng tỏ sở lý luận thựctiễn vận dụng tốn cónộidungthựctiễnvàodạy học chươngPhươngtrình,hệphươngtrìnhmơn tốn 10 - THPT Phân tích hướng dẫn giải tốn cónộidungthựctiễn thể mối liênhệ với phươngtrình,hệphươngtrìnhđưavào giảng dạyTHPT qua thấy ý nghĩa “ Học đơi với hành ” Biết vận dụngphươngtrình,hệphươngtrình tốn học để giải số tốn thực tế, góp phần nâng cao tính thực tế, chất lượng dạy học mơn tốn trường THPT Đối tượng nghiên cứu Với mục đích nghiên cứu nêu trên, đối tượng nghiên cứu SKKN là: a Nghiên cứu tính thựctiễn tính ứng dụng tốn học b Tốn học liênhệ với thựctiễn đựơc thể nộidungchươngphươngtrình,hệphươngtrình – Đạisố10THPT c Thựctiễndạy học mơn tốn 10 vấn đề vận dụngphươngtrình,hệphươngtrìnhvào giảng dạy tốn cónộidungthựctiễn d Đề xuất số tốn thực tiễn, liênmơn áp dụngvàodạy học chươngphươngtrình,hệphươngtrình – Đạisố10THPTPhương pháp nghiên cứu Trong q trình nghiên cứu tơi sử dụngsốphương pháp sau: • Nghiên cứu phân tích tài liệu giáo khoa tài liệu tham khảo cóliên quan • Phương pháp tạo tình có vấn đề • Phương pháp quan sát sư phạm • Phương pháp thống kê, tổng hợp, so sánh II NỘIDUNG SÁNG KIẾN KINHNGHIỆM 2.1 Cơsở lí luận sáng kiến kinhnghiệmThực tế cho thấy, tốn học đưa lại nhiều kết đáng kể, cókinh tế học Đó ứng dụng hàng ngày thơng qua vấn đề tổ chức quản lí sản xuất Ai biết khơng phải cần có kỹ thuật cao, máy móc đại sản xuất tốt mà trọng tâm vấn đề phải biết tổ chức quản lí sản xuất cách khoa học để phát huy đầy đủ hiệu kỹ thuật máy móc Đứng trước vấn đề tổ chức sản xuất người ta đưa nhiều phương án giải khác đương nhiên chọn phượng án tốt Bài tốn “ lựa chọn” số nhà khoa học ý nghiên cứu tỉ mỉ, chi tiết kết nghiên có ý nghĩa lớn sản xuất đồng thời áp dụng hầu hết lĩnh vực kinh tế: cơng nghiệp, nơng nghiệp, giao thơng vận tải… Trong cơng nghiệp việc đưavào lý thuyết phươngtrình tuyến tính để đặt kế hoạch sản xuất hợp lý nhằm tập trung thiết bị, tiết kiệm thời gian, giảm ngun liệu Ví dụ 1: Một phân xưởng may lập kế hoạch may lơ hàng, theo ngày phân xưởng phải may xong 90 áo Nhưng nhờ cải tiến kỹ thuật, phân xưởng may 120 áo ngày Do đó, phân xưởng khơng hồn thành kế hoạch trước thời hạn ngày mà may thêm 60 áo Hỏi theo kế hoạch phân xưởng phải may áo? Phân tích: Theo kế hoạch thực tế thực Mối quan hệ chúng : + Số lượng áo may ngày x Số ngày may = Tổng số áo may + Tốn học hố đại lượng mối quan hệ chúng + Chọn ẩn đại lượng chưa biết + Ta chọn x số ngày may theo kế hoạch Khi tổng số áo may 90x, nhờ cải tiến kỹ thuật nên số ngày may x - tổng số áo may là: 120(x - 9) Từ ta có, quan hệ tổng số áo may số áo may theo kế hoạch biểu thị phương trình: 120 ( x - 9) = 90x + 60 ⇔ x = 38 Vậy kế hoạch may áo ban đầu xưởng may 38 ngày Trong nơng nghiệp áp dụngphươngtrình tuyến tính để cải tiến kế hoạch trồng trọt, chăn ni nhằm tận dụng xuất loại đất, nâng cao mức thu hoạch… Ví dụ 2: Trên cánh đồng cấy 60 lúa giống 40 lúa giống cũ Thu hoạch tất 460 thóc Hỏi xuất loại lúa biết trồng lúa thu hoạch trồng lúa cũ Giải: + Gọi xuất lúa giống x ( tấn), x > + Gọi xuất lúa giống cũ y ( tấn), y> 60 x + 40 y = 460 x = ⇔ + Ta cóhệphươngtrình y − x = y = Vậy: Năng suất lúa giống Năng suất lúa giống cũ Trong giao thơng vận tải dùngphươngtrình tuyến tính để chọn phương án vận chuyển tiết kiệm nhất, giảm bớt qng đường chạy khơng, chọn phương án hợp lí để giảm bớt thời gian quay vòng… Ví dụ 3: Một ơtơ dự định từ tỉnh A đến tỉnh B thời gian định Nếu chạy với vận tốc 45 km/h đến B chậm Nếu chạy với vận tốc 60 km/h đến B sớm 45 phút Tính qng đường AB thời gian dự định lúc đầu Giải: + Gọi độ dài qng đường AB x km (x > 0), thời gian dự định t ( t > ) x x + Như thời gian lúc ban đầu , lúc sau 45 60 + Theo thời gian lúc đầu t + , lúc sau t - x t + = 45 t = 4,5 ⇔ + Từ ta cóhệphươngtrình : x = 225 t − = x 60 Như vậy, việc dạy giải tốn cách lập phươngtrình,hệphươngtrình khâu mấu chốt dạy cho học sinh biết lập phươngtrình xuất phát tình thực tế tốn Để làm điều đó, điều quan trọng tập cho học sinh biết xem xét đại lượng mối liên quan với nhau, phát mối liên quan với nhau, phát mối liên quan lượng chúng để sở mà lập phươngtrình Những mối liênhệđại lượng tốn chia thành hai loại: loại thứ mối liênhệ cụ thể tốn loại thứ hai mối liênhệ tổng qt có tính chất qui luật Thuộc loại thứ kể : - Năng xuất dự kiến + = xuất thực tế - Thời gian dự kiến - = Thời gian thực tế … Thuộc loại liênhệ thứ hai nêu: - Tổng sản lượng = xuất x thời gian sản xuất - Đường = vận tốc x thời gian (trong chuyển động thẳng đều) - Nửa chu vi hình chữ nhật = chiều dài + chiều rộng … Ta xét ví dụ sau; “ Một xí nghiệp dự định sản suất 600 sản phẩm thời gian định Do thi đua xí nghiệp tăng suất thêm sản phẩm ngày hồn thành kế hoạch trước thời hạn ngày Tính suất dự định xí nghiệp đó” Phân tích: Trước hết ta hướng dẫn học sinh kí hiệu x suất dự kiến xí nghiệp Bằng cách gọi mối liênhệ “ suất dự kiến cộng thêm suất thực tế, ta dẫn họ đến biểu thị suất thực tế qua xuất dự kiến là: x + Trên sở giúp học sinh phát mối liênhệ “ Tổng sản lượng suất nhân với thời gian sản xuất, dẫn dắt học sinh 600 600 biểu thị thời gian dự kiến thời gian sản xuất thực tế ” Bằng x x+5 cách gợi ý mối liênhệ “ Thời gian dự kiến bớt ngày thời gian sản xuất 600 600 −6= thực tế”, ta giúp học sinh đến lập phương trình: x x+5 Trong mối liênhệ loại thứ nêu đề tốn mối liênhệ loại thứ hai coi kiến thức học sinh phải nắm vững, mối liênhệ khơng nêu tốn, học sinh cần dựavào vốn kiến thức để phát chúng Người thầy giáo cần nhấn mạnh cho học sinh, thấy phát mối liênhệđại lượng tốn sở để lập phươngtrình giải tốn Làm tập dượt cho học sinh biết xem xét vật mối liênhệ với khơng tách rời cách lập, yếu tố tư biện chứng 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinhnghiệm Việc dạy học tốn nhà trường phổ thơng rơi vào tình trạng bị coi nhẹ thực hành ứng dụng tốn học vào đời sống Mối liênhệ tốn học với thực tế yếu, học sinh tốn học hố tình thựctiễn sống Thực trạng ấy, theo tơi ngun nhân sau: + Tất sách giáo khoa mơn tốn tài liêu tham khảo đề cập đến ứng dụng lĩnh vực ngồi tốn học mà tập trung ý tới ứng dụngcó tính chất nộimơn tốn + Các đề thi tốn hạn chế việc đưa tốn thựctiễn nên gặp tốn học sinh thường lúng túng khơng biết chuyển ngơn ngữ từ đề sang ngơn ngữ tốn học dẫn đến bế tắc q trình tìm lời giải Từ ngun nhân mà q trình giảng dạy giáo viên dè dặt việc dạy học sinh giải tốn cónộidungthực tế nói chung dạy học sinh giải tốn thực tế cách lập phươngtrìnhhệphươngtrìnhnói riêng 2.3 Các giải pháp sử dụng để giải vấn đề 2.3.1 Tóm tắt kiến thứcchương III - Khái niệm phươngtrình - Điều kiện phươngtrình - Phươngtrình tương đương, phép biến đổi tương đương - Phươngtrìnhhệ - Giải biện luận phươngtrình ax + b = - Giải biện luận phươngtrình bậc hai ax + bx + c = (a ≠ 0) - Định vi- ét ( thuận đảo) - Phươngtrình qui phươngtrình bậc nhất, bậc hai - Phươngtrình,hệphươngtrình bậc nhiều ẩn 2.3.2 Các ví dụ tốn cónộidungthực tế - liênmơn ứng dụng lí thuyết tập Trong thực tế đời sống, kỹ thuật, sản xuất có nhiều đại lượng biến đổi phụ thuộc lẫn ta phải tìm cụ thể tất cả, đại lượng Để giải vấn đề ta cần “ tốn học hố” mối quan hệ phụ thuộc đại lượng thành phươngtrình,hệphươngtrình Khi việc giải phươngtrình,hệphươngtrình, giúp ta giải vấn đề mà thựctiễn đòi hỏi Chúng ta quan tâm đến vấn đề: tốn học phươngtrình,hệphươngtrình giúp người giải tốn thực tế việc hình thành kỹ chuyển tốn thựctiễn thành phươngtrình,hệphươngtrình học sinh Trong việc dạy giải tốn cách lập phươngtrình khâu mấu chốt dạy cho học sinh biết lập phươngtrình xuất phát tình thực tế tốn Để làm điều đó, điều quan trọng tập cho học sinh biết xem xét đại lượng mối liên quan với nhau, phát mối liên quan lượng chúng để sở mà lập phươngtrình Rèn luyện cho học sinh khả sử dụng biểu thức chứa biến để biểu thị tình thực tế Trong dạy học cần trọng cho học sinh lập phươngtrình tập luyện cho học sinh biểu thị tình thực tế biểu thứccó chứa biến đại diện cho đại lượng chưa biết Cần tập cho học sinh mặt biết chuyển từ tình thực tế sang biểu thức biểu thị chúng mặt khác biết chuyển từ biểu thức sang tình thực tế phù hợp với chúng, ta nên tiến hành theo bước sau: Bước 1: Đặt ấn số Ẩn số chưa biết, phải tìm.Thơng thường tốn u cầu tìm ( ) ta đặt (các ) làm ẩn ( ẩn) Cũng có với cách đặt ẩn mà phươngtrình lập nên q phức tạp khó khăn cần thay đổi cách chọn ẩn chọn thêm ẩn Ẩn mà ta chọn phải liên quan đến cần tìm cho phép ta lập phươngtrình dễ dàng Bước 2: Lập phươngtrình Sau đặt ẩn ( nêu điều kiện cho ẩn có) ta tiến hành biểu thị đại lượng qua số biết ẩn số Để lập phươngtrình ( phương trình) ứng với tốn cần giải, ta cố gắng hình dung thật cụ thể rõ ràng điều kiện tốn ( quan hệ cần tìm, chưa biết cho) Trong trường hợp phức tạp, ta phải phân tích, tách phần, phiên dịch phần theo ngơn ngữ đại số, xếp chúng theo trình tự hợp lí, sau kết hợp phần nói để biểu diễn lượng hai cách khác thành đẳng thức Như ta cóphươngtrình Thơng thường tốn ta đưa ẩn, cần thiết lập nhiêu phươngtrình Cũng có trường hợp ngoại lệ: ta đưa thêm ẩn phụ vào sau khử ẩn có trường hợp dẫn đến phươngtrìnhnghiệm ngun Cũng có với cách đặt ẩn mà phươngtrình lập nên q phức tạp khó khăn cần thay đổi cách chọn ẩn chọn thêm ẩn Ẩn mà ta chọn phải liên quan đến cần tìm cho phép ta lập phươngtrình dễ dàng Chú ý: Trong tốn thực tế giải cách lập phươngtrình,hệphươngtrìnhcóđại lượng liên quan chặt chẽ với nhau, nói đến đại lượng ta phải nghĩ đến đại lượng dù tốn khơng nói đến đại lượng quan hệ Bước 3: Trình tự bước lời giải tốn cách lập phươngtrình,hệphươngtrình - Chọn ẩn số, xác định điều kiện cho ẩn ( có) - Biểu thị đại lượng qua ẩn sốsố cho - Lập phươngtrình ( hệphương trình) - Chọn nghiệm thích hợp trả lời Vai trò phươngtrình,hệphươngtrình đời sống thựctiễn thể phong phú, đa dạng nhiều lĩnh vực, giúp người giải tốn sống kinh tế, kỹ thuật,… Giáo viên giúp học sinh thấy rõ điều thơng qua số ví dụ trích dẫn sau: 2.3.2.1 Tốn xuất Bài tốn Hai cơng nhân làm cơng việc sau 5giờ 50 phút hồn thành.Sau làm chung người phải điều làm việc khác nên người phải làm tiếp xong cơng việc Hỏi người phải làm ? Phân tích tìm lời giải: Gọi x, y số mà người phải làm xong cơng việc người thứ làm cơng việc người thứ hai làm x cơng việc ( x > 0, y > 0) Cả hai người làm 5giờ 50 phút hay y = 5 xong cơng việc họ làm 35 cơng việc 6 Từ ta lập hệphươngtrình để giải Giải: Gọi số mà người phải làm xong cơng việc x giờ, y ( x > 0, y > 0) Thì người thứ làm cơng x việc, người thứ hai làm cơng việc Cả hai người làm xong cơng y 35 việc 5giờ 50 phút làm 35 cơng việc 6 hay 1 6 cơng việc, ta cóphươngtrình ( 1): + = x y 35 35 1 Trong hai làm chung hai người làm 5( + ) cơng việc, x y người lại làm hai tức làm cơng việc, ta cóphương y 1 trình ( 2): 5( + ) + = x y y 1 x + y = 35 x = 10 ⇔ Theo đầu ta cóhệphương trình: 5( + ) + = y = 14 x y y Vậy làm người thứ phải làm hết 10 giờ; người thứ hai phải làm 14 làm xong cơng việc Bài tốn Một người mua hai loại hàng phải trả tổng cộng 2,17 triệu đồng, kể thuế giá trị gia tăng (VAT) với mức 10% loại hàng thứ 8% loại hàng thứ hai Nếu thuế VAT 9% hai loại hàng người phải trả tổng cộng 2,18 triệu đồng Hỏi khơng kể thuế VAT người phải trả tiền cho loại hàng ? Phân tích tìm lời giải: Giả sử khơng kể thuế VAT, người mua hàng phải trả x triệu đồng cho loại hàng thứ nhất; y triệu đồng cho loại hàng thứ hai + Khi sốtiền phải trả cho loại hàng thứ ( kể thuế VAT 10%) 110 108 x (triệu đồng) , cho loại hàng thứ hai ( kể thuế VAT 8%) y (triệu 100 100 đồng) 110 108 x + y = 2,17 ⇔ 1,1x + 1,08y = 2,17 (1) + Ta cóphương trình: 100 100 + Khi thuế VAT 9% cho hai loại hàng sốtiền phải trả : 109 (x + y ) = 2,18 hay 1,09 x + 1,09 y = 2,18 (2) 100 + Kết hợp (1) (2) ta cóhệphương trình: 1,1x + 1,08 y = ,17 x = ,5 ⇔ 1,09 x + 1,09 y = ,18 y = 1,5 Vậy khơng kể thuế VAT người mua hàng phải trả 0,5 triệu đồng cho loại hàng thứ 1,5 triệu đồng cho loại hàng thứ hai Bài tốn 3: Hai cần cẩu lớn bốc rỡ lơ hàng cảng Sài Gòn Sau có thêm năm cần cẩu bé ( cơng suất bé hơn) làm việc Cả bảy cần cẩu làm việc xong Hỏi cần cẩu làm việc xong việc Biết bảy cần cẩu làm việc từ đầu xong việc Phân tích tìm lời giải: + Gọi thời gian có cần cẩu lớn làm xong việc x ( giờ), x > + Gọi thời gian cần cẩu bé làm đến xong việc y ( giờ) + Theo đầu hai cần cẩu lớn làm giờ, năm cần cẩu bé làm 12 15 + =1 xong việc Do ta cóphươngtrình (1): x y Nếu bảy cần cẩu làm từ đầu xong việc Do ta lại có + = phươngtrình (2): x y Giải hệ gồm hai phươngtrình (1) (2) ta (x ; y) = ( 24;30) Vậy cần cẩu lớn làm 24 xong cơng việc, cần cầu bé làm 30 xong việc Bài tốn ( Bài tốn cổ ): Một người nói với bạn: “ Nếu anh đưa tơi đina tơi giàu gấp anh lần”, người bạn trả lời: “ Nếu anh cho tơi đina tơi giàu gấp anh lần !” Hỏi người có đina ? Phân tích tìm lời giải: Bài tốn có hai người gọi số đina người đầu x, số đina người thứ hai y ( x > 0, y > 0) Với điều kiện đầu dẫn đến hệphương trình: x=7 x + = 5( y − ) 17 ⇔ y + = 7(x − 5) y = 14 17 14 Vậy người đầu có đina, người thứ hai có đina 17 17 Bài tốn lấy “Liberabaci” nhà tốn học Italia Leonađơ Pizaxnki phibonaxi 10 giảm tài sản chi phí 100 bảng Sau năm ơng nhận thấy gia tài tăng gấp đơi Hỏi ban đầu ơng cótiền ? Phân tích tìm lời giải: Ta nhận thấy nộidung tốn chứa mệnh đề cần phải biểu thị biểu thức Thương gia cósố tiền: x ( bảng) ( x > 0) Năm chi phí 100 bảng ,còn : x - 100 ( bảng) x − 100 x − 400 Bảng số dư ơng ta tăng lên : x – 100 + hay 3 x − 400 x − 700 − 100 hay Năm thứ hai ơng lại chi phí 100 bảng nữa: 3 x − 700 x − 700 16 x − 2800 + Và lại tăng số dư lên : hay 3 9 16 x − 2800 16 x − 3700 Năm thứ ba ơng lại chi phí 100 bảng: - 100 hay 9 16 x − 3700 16 x − 3700 Vàsố dư tăng lên : + 27 64 x − 14800 = 2x Hơn số tài sản gấp đơi lúc ban đầu: 27 Như tốn biểu diễn dạng phươngtrìnhđại số: 64 x − 14800 = 2x 27 Hay 64x – 14800 = 54x ⇔ 10x =14800 ⇔ x=1480 Vậy thương gia lúc đầu có 1480 bảng Bài tốn 5: Một thương gia hàng năm tăng tài sản lên 2.3.2.2 Thể tốn chuyển động Bài tốn1 Một ơtơ dự định qng đường AB dài 60km thời gian định Trên nửa qng đường đầu, đường xấu nên ơtơ với vận tốc dự định 6km Để đến B dự định, ơtơ phải qng đường lại dự định 10km Tìm thời gian dự định để ơtơ hết qng đường Phân tích lời giải: Nếu ta đặt ẩn cần tìm ( thời gian dự định) phươngtrình lập cồng kềnh Ta thay đổi cách đặt ẩn phụ vận tốc dự định Khi việc phiên dịch tốn sang ngơn ngữ đạisố dễ dàng Tìm vận tốc dự định ta có thời gian biết qng đường Vậy tốn ta tiến hành sau: Vận tốc dự định tơ: x ( x> 0) 11 60 x Vận tốc nửa qng đường đầu: x - 30 Thời gian đi: x−6 Vận tốc nửa qng đương sau: x + 10 30 Thời gian đi: x + 10 30 30 60 + = Đến B dự định: ( 1) x − x + 10 x Giải phươngtrình (1) ta x = 30( thỏa mãn) Vậy thời gian dự định Thời gian dự định : Bài tốn Một ca nơ xi khúc sơng dài 90 km ngược 36km Biết thời gian xi dòng nhiều thời gian ngược dòng vận tốc xi dòng vận tốc ngược dòng 6km/h Hỏi vận tốc ca nơ lúc xi dòng lúc ngược dòng ? Phân tích tìm lời giải Phiên dịch phần đề sang ngơn ngữ đạisố sau: Vận tốc ca nơ lúc ngược dòng: x ( km/h) ( x > 0) Vận tốc ca nơ lúc xi dòng : x + (km/h) Thời gian xi dòng nhiều ngược dòng giờ: x = (thỏ a mã n) 90 36 − = ⇔ x − 21x + 108 = ⇔ x+6 x a mã n) x = 12 ( thỏ Suy vận tốc lúc ngược dòng 9km/h xi dòng 15km/h vận tốc lúc ngược dòng 12km/h x i dòng 18km/h Khai thác tốn ta đưa giải tốn tương tự cách: Thay “ Thời gian xi dòng nhiều thời gian ngược dòng giờ” “ Tổng thời gian xi dòng ngược dòng 10 giờ” Còn phần khác tốn giữ ngun Thay “ Hỏi vận tốc ca nơ lúc xi dòng lúc ngược dòng ? ” “ Hỏi thời gian ca nơ lúc xi dòng lúc ngược dòng ? ” khác giữ ngun Bài tốn ( Dành cho học sinh giỏi) Một xuồng nhỏ chở người du lịch phải hồn thành chơi dọc sơng từ địa điểm A đến B ngược trở lại mà khơng vượt q Chiếc xuồng phải có vận tốc riêng nào, vận tốc nước sơng 5km/h, khoảng cách từ A đến B 28 km xuồng dừng lại điểm B 40 phút Phân tích tìm lời giải: Gọi vận tốc riêng xuồng là: x( km/h) 12 Khi đó: xuồng chạy xi dòng với vận tốc: (x + )km/h, xuồng chạy ngược dòng với vận tốc: (x - 5) km/h Và tồn hành trình, kể thời gian dừng lại điểm B diễn 28 28 + + ) Theo điều kiện : t ≤ thời gian: t = ( x+5 x−5 28 28 + + ≤3 Do đó: x+5 x−5 Biết vận tốc xuồng lớn vận tốc nước, nghĩa là: x > số (x+5), (x - 5) dương Bằng phép biến đổi tương đương ta có bất phương trình: x2 – 24 x – 25 ≥ Để tìm vận tốc riêng xuồng ta phải giải bất phươngtrình 2.3.2.3 Tốn tăng trưởng Bài tốn1: Dân số thành phố A sau hai năm tăng từ 2000000 lên 2048288 người Tính xem hàng năm trung bình dân số tăng phần trăm ? Phân tích tìm lời giải: Ở tốn cần ý phân tích điều kiện ( sau hai năm…) ta tách tính số dân tăng sau năm ( sau chọn ẩn ), sau hai năm Làm việc phiên dịch ngơn ngữ đạisố thuận lợi Cụ thể ta phân chia xếp lại tốn sau: Số phần trăm tăng dân số trung bình năm là: x ( x%, x > 0) x = 20000 x Số dân tăng năm thứ nhất: 2000000 100 Số dân tăng năm thứ hai: (2000000 + 20000x) x = 200 x(x + 100) 100 Sau hai năm tăng từ 2000000 lên 2048288 người: 2000000 + 20000 + 200.(x + 100) = 2048288 Từ phươngtrình lập được, giải ta có: ∆ = 101,2 nghiệm: x= 1,2 x = -201,2 (loại) Suy dân số tăng trung bình hàng năm 1,2 % Khai thác tốn: Có thể đưa giải cho tốn tương tự tăng trưởng kinh tế, tăng hàng hố xuất khẩu,… Bài tốn Năm ngối hai đơn vị sản xuất nơng nghiệp thu hoạch 720 thóc Năm nay, đơn vị thứ làm vượt mức 15%, đơn vị thứ hai làm vượt mức 12% so với năm ngối Do hai đơn vị thu hoạch 819 thóc Hỏi năm, đơn vị thu hoạch thóc ? Phân tích tìm lời giải: Gọi x (tấn) y (tấn) số thóc mà hai đơn vị thu hoạch năm ngối ( Đk: x > 0, y > 0) Theo điều kiện đầu ta có: 13 Năm ngối, hai đơn vị sản xuất thu hoạch 720 thóc, nghĩa là: x + y = 720 (1) Năm nay, đơn vị thứ làm vượt mức 15%, nghĩa đơn vị thứ thu 15 x 115 x = hoạch được: x + (tấn) 100 100 12 y 112 y = Và đơn vị thứ hai thu hoạch được: y + (tấn) 100 100 115 x 112 y + = 819 (2) Và hai thu hoạch 819 tấn, nghĩa là: 100 100 x + y = 720 x = 420 ⇔ Ta cóhệphương trình: 115 x 112 y 100 + 100 = 819 y = 300 Vậy năm ngối đơn vị thứ thu hoạch 420 thóc,đơn vị thứ hai thu thu hoạch 300 thóc Năm đơn vị thứ thu hoạch 483 thóc, đơn vị thứ hai thu hoạch 336 thóc Bài tốn Bác Minh vay 2000000 đồng ngân hàng để làm kinh tế gia đình thời hạn năm Lẽ cuối năm bác phải trả vốn lẫn lãi xong bác ngân hàng cho kéo dài thời hạn thêm năm nữa, số lãi năm đầu gộp vào với vốn để tính lãi năm sau lãi suất cũ Hết hai năm bác phải trả tất 2420000 đồng Hỏi lãi xuất cho vay phần trăm năm ? Phân tích tìm lời giải: Gọi x(%) lãi xuất ngân hàng cho vay năm (ĐK:x > 0) x = 20000 x ( đồng) Khi đó, tiền lãi sau năm là: 2000000 100 Sau năm đầu vốn lẫn lãi là: 2000000 + 20000x ( đồng) Tiền lãi năm thứ hai : 20000x + 200x2 (đồng) Sau hai năm bác Minh phải trả vốn lẫn lãi cho ngân hàng là: 2000000+ 20000x + 20000x + 200x2 = 2000000 + 40000x + 200x2 Theo đề ta cóphương trình: 2000000 + 40000x + 200 x2 = 2420000 ⇔ x2 + 200x - 2100 = Giải phươngtrình ta x = 10; x = - 210 (loại x >0) nên ta chọn x=10 Vậy lãi xuất ngân hàng cho vay 10%/ năm Bài tốn Có hai dây chuyền may áo sơ mi Ngày thứ hai dây chuyền may 930 áo Ngày thứ hai dây chuyền tứ tăng xuất 18%, dây chuyền thứ hai tăng suất 15% nên hai dây chuyền may 1083 áo Hỏi ngày thứ dây chuyền may bao nhiêu áo sơ mi? Phân tích tìm lời giải: 14 Gọi x, y số áo sơ mi dây chuyền thư nhất, thứ hai may ngày thứ (ĐK x, y ngun dương ) Ta cóhệphươngtrình sau: x + y = 930 x = 450 ⇔ 1,18 x + 1,15 y = 1083 y = 480 2.3.2.4 Các tốn có tính liênmơn Ý nghĩa việc đặt giải phươngtrình,hệphươngtrình khơng thể nộimơn tốn mà thể mơn học khác vật lý, hố học, sinh học,…Phương trình,hệphươngtrình cơng cụ khơng thể thiếu giải vấn đề mơn học thơng qua số ví dụ sau: A Thể hố học Bài tốn 1: Người ta hồ lẫn gam chất lỏng với gam chất lỏng khác có khối lượng riêng nhỏ 200kg/m để hỗn hợp có khối lượng riêng 700kg/m3 Tìm khối lượng riêng chất lỏng Phân tích tìm lời giải: Chú ý tập đề cập đến vấn đề liên quan đến kiến thức vật lý, cụ thể ta phải ý cơng thứcliên quan đến khối lượng riêng Khi ta phiên dịch tốn sang ngơn ngữ đạisố sau: Khối lượng riêng chất lỏng thứ x (x kg/m , x > 200) Khối lương riêng chất lỏng thứ hai x - 200 0,008 0,006 ,014 + = Hỗn hợp có khối lượng riêng 700kg/m : (1) x x − 200 700 Từ (1) giải phươngtrình bậc hai ta cónghiệm x = 800 x = 200 ( loại) Suy khối lượng riêng chất lỏng thứ 800kg/m , chất lỏng thứ hai 600kg/m Khai thác tốn Thay đổi điều kiện ta có tốn tương tự, chẳng hạn thay câu a) hỗn hợp có khối lượng riêng 700kg/m “ ” hỗn hợp tích 0,2 lít, phần lại giữ ngun,… Bài tốn 2: Cho lượng chứa 10% muối Nếu pha thêm 200g nước dung dịch 6% Hỏi có gam dung dịch cho Phân tích tìm lời giải: Qua tốn ta chuyển sang ngơn ngữ đạisố sau: Số gam dung dịch cho x ( x > 0) 10 x Chứa 10% muối: 100 Thêm 200 gam nước : x + 200 15 10 x = (x + 200) (*) 100 100 Từ (*) giải PT bậc ta x = 300 Vậy có 300 gam dung dịch Được dung dịch 6% : Khai thác tốn ta thay đổi điều kiện thay đổi ẩn để có tốn tương tự Cho lượng dung dịch chứa m% muối Nếu pha thêm gam nước dung dịch k% (m < k < bão hồ) Hỏi códung dịch cho? Cho lượng dung dịch chứa p% muối Nếu pha thêm n gam muối q% dung dịch r% Hỏi códung dịch cho? Cho m gam dung dịch chứa p % muối Hỏi phải thêm vào gam muối để dung dịch q %? Bài tốn 3: Tỉ lệ đồng loại quặng A nhỏ tỉ lệ đồng loại quặng B 15% Trộn hai loại quặng hỗn hợp có 50% đồng Khối lượng quặng A hỗn hợp 25 kg , quặng B khối lượng quặng A Tính tỉ lệ phần trăm đồng loại quặng Phân tích tìm lời giải: Gọi tỉ lệ phần trăm đồng quặng loại A x% Gọi tỉ lệ phần trăm đồng quặng loại B y% ( x > 0, y > 0) Khối lượng đồng loại quặng A 25x (kg) Vì khối lượng quặng B khối lượng quặng A, nên khối lượng quặng B 12,5 (kg) khối lượng y đồng quặng B 12,5y ( kg) Khối lượng quặng hỗn hợp trộn hai loại quặng với 25 + 12,5 = 37,5 ( kg) Và khối lượng đồng hỗn hợp 37,5.50 (kg) Theo đầu ta cóhệ y − x = 15 phương trình: 25 x + 12 ,5 y = 37 ,5.50 Giải hệ ta tìm x = 45%; y = 45%+15% = 60% Vậy: Tỉ lệ phần trăm quặng A 45%, quặng B 60% B Thể vật lý Bài tốn 1: Một đoạn mạch điện gồm điện trở R mắc nối tiếp với linh kiện x mà hiệu điện hai cực x U x = U = a I , với a số, y cường độ dòng điện mạch Biết hiệu điện đặt vào hai đầu đoạn mạch có giá trị khơng đổi U Hãy xác định cường độ dòng điện I 2V mạch Áp dụng với: U0 =24V, R= Ω , a = A2 Phân tích tìm lời giải: CB 16 Theo ta có U0 = UR + Ux = IR + a I Suy IR + a I - U0 = (1) Giải phươngtrình (1) bậc hai ẩn I ta được: −a + a + 4U R I = (thỏ a mã n) (−a + a + 4U R )2 2R ⇒I =( I) = 4R2 − a − a + U R I = (loại) 2R Thay số với U0 = 24V; R = Ω ; 2V 2 a = I = (−2 + + 4.24.5 ) = 4( A) 4.52 A2 Vậy cường độ dòng điện mạch I = 4A Bài tốn 2: Trên mạch điện kín Biết R1 = 0,25 Ω ; R2 = 0,36 Ω ; R3 = 0,45 Ω U = 0,6V Gọi I1 cường độ dòng điện mạch chính, I 2, I3 cường độ dòng điện hai mạch rẽ Tính I1, I2, I3 ( xác đến hàng phần trăm) Phân tích tìm lời giải: Coi ba ẩn cường độ dòng điện mạch cường độ dòng điện hai mạch rẽ phải tìm ẩn số tương ứng I1, I2, I3 Ta ý đến quan hệ hiệu điện điện trở ,cường độ dòng điện ta cóhệphương trình: I1 − I − I = I1 − I − I = I1 R1 + I R2 = U ⇔ 0,25 I1 + 0,36 I = 0,6 I R − I R = 0,36 I − 0,45 I = 2 3 Giải hệphươngtrình qui tròn kết đến hàng phần trăm ta có: I1 ≈ 1,33A; I2 ≈ 0,74 A; I3 ≈ 0,59 A C Thể sinh học Bài tốn 1: Ở lồi thực vật, gen nhiễm sắc thể (NST) liên kết hồn tồn tự thụ phấn có khả tạo nên 1024 kiểu tổ hợp giao tử Trong thí nghiệm người ta thu số hợp tử Cho số hợp tử phân chia ba lần liên tiếp, số hợp tử phân chia hai lần liên tiếp, qua phân chia lần.Sau phân chia số NST tổng cộng tất hợp tử 580 Hỏi số nỗn thụ tinh? Phân tích tìm lời giải: Vì thực vật tự thụ phấn nên cósố kiểu giao tử 1024 =32 Suy số NST NST 2n 10 Gọi x số hợp tử thu thí nghiệm (x số nỗn thụ tinh ) đố ta có PT: 2 x 2x 580 29 x x.2 + x.2 + (x − − ).2 = ⇔ = 58 ⇔ x = 12 4 10 Kết quả: số nỗn thụ tinh thí nghiệm 12 17 Bài tốn 2: Lai hai cá thể dị hợp từ hai cặp gen, gen nhiễm sắc thể ( NST) thường Tại vùng sinh sản quan sinh dục cá thể đực có tế bào A, B, C, D phân chia liên tiếp nhiều đợt để hình thành tế bào sinh dục sơ khai, sau tất qua vùng sinh trưởng tới vùng chín để hình thành giao tử Số giao tử có nguồn gốc từ tế bào A sinh tích số tế bào sinh dục sơ khai tế bào A tế bào B sinh Số giao tử tế bào có nguồn gốc từ tế bào C sinh gấp đơi số giao tử có nguồn gốc từ tế bào A Số giao tử tế bào có nguồn gốc từ tế bào D sinh số tế bào sinh dục sơ khai có nguồn gốc từ tế bào từ tế bào A Tất giao tử tham gia thụ tinh có 80% đạt kết Tính kiểu tổ hợp giao tử thu hợp tử thời gian phân chia vùng sinh sản tế bào A, B, C, D tốc độ phân chia tế nhanh nhanh lần? Phân tích tìm lời giải: Hai cá thể dị hợp tử cặp gen, gen NST thường cặp gen phân li độc lập, số kiểu giao tử 22.22 = 16 (kiểu) Số hợp tử thu 16.6 = 96 (hợp tử) Vì hiệu thụ tinh 80% nên số giao tử hình thành 90: 80% = 120 (giao tử) Suy số tế bào sinh dục sơ khai đực tham gia phân 120:4 = 30 Gọi x, y, z, t số tế bào sinh dục sơ khai có nguồn gốc từ tế bào A,B,C,D Khi ta cóhệphương trình: x + y + z + t = 30 x = xy = x y = ⇔ z = 2x z = 16 4t = x t = Số lần phân bào tính theo cơng thức 2k (k số phân bào) ta có: kA=3, kB = 2, kC = 4, kD = Vậy tỉ lệ tốc độ phân bào tế bào A, B, C, D là: VA :VB:VD =3:2:4:1 Phươngtrình,hệphươngtrình tốn học có ý nghĩa thựctiễn hoạt động giải trí người “Thuật tốn số ”là trò chơi thú vị mà mấu chốt việc đặt giải phươngtrình,hệphươngtrìnhđạisố D Thể giải trí Chẳng hạn tốn mà kết cho ta biết mốc lịch sử, tên địa danh, danh nhân, kiện quan trọng giới… Bài tốn (Của Mêtrơđo - đốn tuổi) Diophante nhà tốn học cổ HyLạp Trên mộ ơng người ta khắc bia đá ghi tóm tắt ơng sau: “ Hỡi người qua đường nơi nhà tốn học Diophante n nghỉ Những số sau cho biết đời ơng: Một phần sáu đời thời niên thiếu, Một phần mười hai trơi qua, râu cằm mọc 18 Diophante lấy vợ, phần bảy đời cảnh hoi Năm năm trơi qua: ơng sung sướng sinh trai đầu lòng Nhưng cậu trai sống nửa đời cha Cuối với nỗi buồn thương sâu sắc, Ơng cam chịu số phận sống thêm bốn năm nữa, sau ơng lìa đời ” Bạn thử tính xem, Diophante thọ tuổi? Phân tích tìm lời giải: Gọi số tuổi chưa biết nhà tốn học Diophante x Từ điều kiện đầu bài, dẫn đến giải phương trình: 1 1 x + x + x + + x + = x ⇔ x = 84 12 Do Diophante sống 84 tuổi Nói đời Mêtrơđo (người viết tốn này) khơng biết rõ, thời gian sinh Trong lịch sử, ơng tác giả tốn hay dạng thơ 2.4 Hiệu sáng kiến kinhnghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường Thơng qua tiến hành thựcnghiệm lớp 10C4 lớp đối chứng 10C3 ban ban với đề tài : “ Mộtvàikinhnghiệmđưa tốn cónộidungthựctiễnliênmơnvàodạychươngphươngtrình,hệphươngtrìnhĐạiSố10 – THPT ” tơi thu số kết sau: + Kết luyện tập có khoảng 85% học sinh lớp 10C4 sinh hứng thú với việc dạy học gắn liền tốn học với thực tiễn, học sinh hiểu thích thú với tính thựctiễn tốn phươngtrìnhhệ phương, khoảng 45% tiếp thu thực hành giải tốn nhanh học + Lớp 10C3 sử dụng tốn có tính thựctiễn khoảng 46% đến 65% em có hứng thứ giải tốn phươngtrìnhhệ phương, số lại em thụ động khơng có biểu thích thú với việc giải tốn liên quan đến hệphươngtrình Để chứng minh tơi xin đưasố kết sau: Kết kiểm tra tiết chương hai lớp 10C4, 10C3 Lớp 10C4 10C3 Số kiểm tra Giỏi Khá SL % SL % SL % SL % SL 40 37 12,5 16,2 13 19 32,5 17 12 42,5 32,4 12,5 0 51,4 Trung bình Yếu Kém % 0 Sau tiến hành nghiên cứu lớp 10C4 lớp 10C3 để đối chứng, kiểm tra kết thúcchươngđạisố10 tơi thu kết sau: Lớp 10C4 10C3 Số kiểm tra Giỏi Khá SL % SL % SL % SL 40 37 22,5 21,6 15 17 37,5 16 12 40,0 32,4 0 46,0 Trung bình Yếu % Kém SL 0 % 0 19 Kết luận, kiến nghị Kết luận chung Thựctiễn hoạt động dạy học tốn giáo viên cần ý đến việc rèn luyện cho học sinh kỹ vận dụng kiến thứcvàothực tiễn, vàomơn học khác, từ tác động đến tình cảm đem lại niềm vui, hứng thú học tập học sinh, đồng thời qua thực khâu quan trong đổi phương pháp dạy học dạy học gắn liền với thực tế sống, khơng dạy theo lối mòn, thụ động, nhàm chán khơ khan Kiến nghị - Qua phần học sinh học, giáo viên nên xây dựng mối liênhệ tốn học với thựctiễn qua khái niệm, định lí, dạy học tập - Giáo viên nên xây dựng mối liênhệliênmơn tốn học với mơn học khác để em thấy rõ vai trò tốn học khoa học nói chung mơn khoa học nói riêng, đặc biệt khoa học tự nhiên Qua em có ý thức trọng mơn học - Khi soạn giáo án giáo viên nên qn triệt ngun lí dạy học “ Học đơi với hành, giáo dục kết hợp với lao động sản xuất, lý luận gắn với thực tiễn, giáo dục nhà trường kết hợp với giáo dục gia đình giáo dục xã hội ” Cuối thân kinhnghiệm nghiên cứu khoa học chưa nhiều nên đề tài có nhiều khiếm khuyết Rất mong đồng chí, đồng nghiệp tiếp tục nghiên cứu, bổ sung để đề tài đạt kết cao Tơi xin chân thành cảm ơn! XÁC NHẬN CỦA ĐƠN VỊ Phó Hiệu trưởng Thanh Hóa, ngày tháng năm Tơi xin cam đoan SKKN viết, khơng chép nộidung người khác Đỗ Duy Thành Ngơ Thị Dun 20 Tài liệu tham khảo Trần Văn Hạo ( Tổng chủ biên ) – Vũ tuấn ( Chủ biên ); Đạisố10 – Nxb Giáo Dục 2007 Đồn Quỳnh ( Tổng chủ biên); Nguyễn Huy Đoan ( Chủ biên); Đạisố10 nâng cao - Nxb Giáo Dục – 2006 Nguyễn Bá Kim; Phương pháp dạy học mơn tốn - Nxb Đại học sư phạm Hà Nội (2004, 2007) Nguyễn Huy Đoan (Chủ biên); Bài tập đạisố nâng cao10 - Nxb Giáo Dục (2006) Nguyễn Thế Khơi (Chủ biên); Vật lí 10 nâng cao – Nxb Giáo Dục Quan Hán Thành; Hố học nâng cao soạn theo chươngtrình10 – Nxb Hà Nội ( 2006) Nguyễn Thành Đạt (Chủ biên); Sinh học 12 Cơ - Nxb giáo dục ( 2006) 21 ... nội dung chương phương trình, hệ phương trình – Đại số 10 THPT c Thực tiễn dạy học mơn tốn 10 vấn đề vận dụng phương trình, hệ phương trình vào giảng dạy tốn có nội dung thực tiễn d Đề xuất số. .. thực tiễn vận dụng tốn có nội dung thực tiễn vào dạy học chương Phương trình, hệ phương trình mơn tốn 10 - THPT Phân tích hướng dẫn giải tốn có nội dung thực tiễn thể mối liên hệ với phương trình, . .. dục xã hội ” Chính tơi chọn đề tài: “ Một vài kinh nghiệm đưa tốn có nội dung thực tiễn liên mơn vào dạy chương phương trình, hệ phương trình Đại số 10 – THPT ” Mục đích nghiên cứu Mục đích nghiên