0

Ứng dụng hình học của tích phân xác định

34 340 0
  • Ứng dụng hình học của tích phân xác định

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Tài liệu liên quan

Thông tin tài liệu

Ngày đăng: 15/09/2017, 14:52

ỨNG DỤNG HÌNH HỌC CỦA TÍCH PHÂN XÁC ĐỊNH Bài toán diện tích D: a ≤ x ≤ b, y nằm f(x) a y = f (x) D a S (D ) = ∫ b a b f ( x ) dx Bài toán diện tích D: a ≤ x ≤ b, y nằm f1(x) f2(x) y = f2 ( x ) b a y = f1 ( x ) S (D ) = ∫ b a f2 ( x ) − f1 ( x ) dx Bài toán diện tích d D: c ≤ y ≤ d, nằm f(y) x = f (y ) S (D) = ∫ d c f ( y ) dy c Bài toán diện tích D: c ≤ y ≤ d, nằm f1(y) f2(y) S (D) = ∫ d c d f2 ( y ) − f1 ( y ) dy x = f1 ( y ) x = f2 ( y ) c Lưu ý Có thể vẽ hình đường cong đơn giản tìm hoành độ(tung độ giao điểm) để xác định cận tích phân •Tính hoành độ giao điểm ⇒ tích phân tính theo biến x(ngược lại tính theo y) Lưu ý tính đối xứng Nếu miên D đối xứng qua Ox, D1 phần phía Ox D S (D) = 2S (D1 ) Ví dụ Tính diện tích miền phẳng giới hạn bởi: y = x ( x − 2), y = Hoành độ giao điểm: 0, S (D) = = ∫ 2 ∫0 x ( x − 2) − dx 16 x (2 − x )dx = 15 Ví dụ Tính diện tích miền phẳng giới hạn bởi: y = x , y = 0, x + y = Ví dụ Tính diện tích miền phẳng giới hạn bởi: y = x , y = 0, x + y = S (D) = ∫ x dx + ∫ (2 − x )dx Hoặc S (D ) = ∫ = (2 − y ) − ydy Lưu ý tính đối xứng Nếu miên D đối xứng qua Ox, D1 phần phía Ox D Vx (D) = Vx (D1 )  V ( D ) = V ( D ) y y  Ví dụ D : x ≥ 0, y ≤ – x2, y ≥ x Tính thể tích D quay quanh Ox, oy ∫ 2 2  Vx = π (2 − x ) − x  dx ∫  Vy = 2π x (2 − x ) − x  dx Ví dụ Tính thể tích D quay quanh Ox D : y = xe − x , y = 0, x = Vx = π ∫0 ( xe ) −x dx Ví dụ Tính thể tích D quay quanh Ox, Oy D : y = − x , y = −1 ≤ x ≤ y = 1− x2 Vx = π = 2π -1 Vy = 2π ∫ ∫ ( x − x dx −1 1− x2 ) dx − x dx ( ) ∫0 Ví dụ Tính thể tích D quay quanh Ox, Oy D : x + y ≤ 2y Pt đường tròn giới hạn C: x = ± 2y − y hay y = 1± 1− x Bài toán diện tích, thể tích với đường cong tham số D giới hạn trục hoành, đường thẳng x=a, x=b đường cong tham số x (t1 ) = a, x (t ) = b Nếu S (D ) = Vx = π x = x (t ), y = y (t ), ∫ t2 t1 ∫ t2 t1 y (t ) x ′(t )dt y (t ) x ′(t )dt , Vy = 2π ∫ t2 t1 x (t ).y (t ) x ′(t )dt Ví dụ Tính diện tích miền D giới hạn bởi: 3 x = cos t , y = sin t ,0 ≤ t ≤ π trục hoành t ∈ [0, π ] ⇒ x ∈ [−1,1] S (D) = ∫ −1 ydx = ∫π sin t3cos t ( − sin t )dt π (sin t − sin t )dt = 6∫ 3π = 16 Ví dụ D: 3 x = cos t , y = sin t ,0 ≤ x ≤ π trục hoành Tính thể tích tạo D quay quanh Ox, Oy Nhận xét: D đối xứng qua Oy (thay x π - x ) t ∈ [0, π / 2] ⇒ x ∈ [0,1]  Vx = 2. π  = 2π ∫ π  y dx ÷  ∫ 2 y (t ) x ′(t )dt Vx = 2π ∫ = 6π Vy = 2π = 2π π sin t3cos t ( − sin t )dt π (sin t − sin t )dt ∫ ∫ ∫ 0 x.y dx π cos 3 t sin t3cos t ( − sin t )dt Độ dài đường cong phẳng Diện tích mặt tròn xoay Cho đường cong C: y= f(x), a ≤ x ≤ b Độ dài đường cong C: L= ∫ b a + [ f ′( x ) ] dx Khi C quay quanh Ox tạo thành diện tích : Sx = 2π ∫ b a f ( x ) + [ f ′( x ) ] dx Ví dụ x ( x − 12),0 ≤ x ≤ 12 Cho đường cong C: y = Tính độ dài đường cong diện tích mặt tạo C quay quanh Ox  x − 12 3x − 12 x −  y′ =  + x = = 6 x x  x ( x − 4) 1+ y′ = 1+ 16 x 2 ( x − 4) 1+ y′ = 1+ 16 x L= ∫ 12 Sx = 2π = ∫ 12 2 + y ′ dx = ∫ 12 x + x + 16 ( x + 4) = = 16 x 16 x ∫ +4 dx x 12 x y + y ′ dx x x+4 ( x − 12) dx x Ví dụ Cho đường cong C: y = ln x , ≤ x ≤ Tính diện tích mặt tròn xoay tạo C quay quanh Oy y y = ln x , ≤ x ≤ ⇔ x = e ,0 ≤ y ≤ ln Sy = 2π ∫ f ( y ) + [ f ′( y ) ] dy ln y e = 2π ∫ 2y + e dy ln y e S y = 2π ∫ = 2π ∫ 2y + e dy + x dx ( = 5− + ln(2 + 5) − ln(1 + 2) 2 ) Bài toán độ dài cung diện tích mặt tròn xoay với đường cong tham số Cho đường cong C: x = x(t), y = y(t), t1≤ t ≤ t2 L=∫ t2 t1 t2 [ x′(t)] S x = ∫ y(t) t1 + [ y′(t ) ] dt [ x′(t)] 2 + [ y′(t ) ] dt ... thể vẽ hình đường cong đơn giản tìm hoành độ(tung độ giao điểm) để xác định cận tích phân •Tính hoành độ giao điểm ⇒ tích phân tính theo biến x(ngược lại tính theo y) Lưu ý tính đối xứng Nếu... ) dx Bài toán thể tích d D: c ≤ y ≤ d, nằm f(y) x = f (y ) c Bài toán thể tích D: c ≤ y ≤ d, nằm f1(y) f2(y) d x = f1 ( y ) c x = f2 ( y ) Lưu ý tính đối xứng Nếu miên D đối xứng qua Ox, D1 phần...Bài toán diện tích D: a ≤ x ≤ b, y nằm f(x) a y = f (x) D a S (D ) = ∫ b a b f ( x ) dx Bài toán diện tích D: a ≤ x ≤ b, y nằm f1(x) f2(x) y = f2 ( x ) b
- Xem thêm -

Xem thêm: Ứng dụng hình học của tích phân xác định , Ứng dụng hình học của tích phân xác định ,

Hình ảnh liên quan

ỨNG DỤNG HÌNH HỌC CỦA TÍCH PHÂN XÁC ĐỊNH - Ứng dụng hình học của tích phân xác định
ỨNG DỤNG HÌNH HỌC CỦA TÍCH PHÂN XÁC ĐỊNH Xem tại trang 1 của tài liệu.