Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 34 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
34
Dung lượng
375,5 KB
Nội dung
ỨNGDỤNGHÌNHHỌCCỦATÍCH PHÂN XÁC ĐỊNH Bài toán diện tích D: a ≤ x ≤ b, y nằm f(x) a y = f (x) D a S (D ) = ∫ b a b f ( x ) dx Bài toán diện tích D: a ≤ x ≤ b, y nằm f1(x) f2(x) y = f2 ( x ) b a y = f1 ( x ) S (D ) = ∫ b a f2 ( x ) − f1 ( x ) dx Bài toán diện tích d D: c ≤ y ≤ d, nằm f(y) x = f (y ) S (D) = ∫ d c f ( y ) dy c Bài toán diện tích D: c ≤ y ≤ d, nằm f1(y) f2(y) S (D) = ∫ d c d f2 ( y ) − f1 ( y ) dy x = f1 ( y ) x = f2 ( y ) c Lưu ý Có thể vẽ hình đường cong đơn giản tìm hoành độ(tung độ giao điểm) để xác định cận tích phân •Tính hoành độ giao điểm ⇒ tích phân tính theo biến x(ngược lại tính theo y) Lưu ý tính đối xứng Nếu miên D đối xứng qua Ox, D1 phần phía Ox D S (D) = 2S (D1 ) Ví dụ Tính diện tích miền phẳng giới hạn bởi: y = x ( x − 2), y = Hoành độ giao điểm: 0, S (D) = = ∫ 2 ∫0 x ( x − 2) − dx 16 x (2 − x )dx = 15 Ví dụ Tính diện tích miền phẳng giới hạn bởi: y = x , y = 0, x + y = Ví dụ Tính diện tích miền phẳng giới hạn bởi: y = x , y = 0, x + y = S (D) = ∫ x dx + ∫ (2 − x )dx Hoặc S (D ) = ∫ = (2 − y ) − ydy Lưu ý tính đối xứng Nếu miên D đối xứng qua Ox, D1 phần phía Ox D Vx (D) = Vx (D1 ) V ( D ) = V ( D ) y y Ví dụ D : x ≥ 0, y ≤ – x2, y ≥ x Tính thể tích D quay quanh Ox, oy ∫ 2 2 Vx = π (2 − x ) − x dx ∫ Vy = 2π x (2 − x ) − x dx Ví dụ Tính thể tích D quay quanh Ox D : y = xe − x , y = 0, x = Vx = π ∫0 ( xe ) −x dx Ví dụ Tính thể tích D quay quanh Ox, Oy D : y = − x , y = −1 ≤ x ≤ y = 1− x2 Vx = π = 2π -1 Vy = 2π ∫ ∫ ( x − x dx −1 1− x2 ) dx − x dx ( ) ∫0 Ví dụ Tính thể tích D quay quanh Ox, Oy D : x + y ≤ 2y Pt đường tròn giới hạn C: x = ± 2y − y hay y = 1± 1− x Bài toán diện tích, thể tích với đường cong tham số D giới hạn trục hoành, đường thẳng x=a, x=b đường cong tham số x (t1 ) = a, x (t ) = b Nếu S (D ) = Vx = π x = x (t ), y = y (t ), ∫ t2 t1 ∫ t2 t1 y (t ) x ′(t )dt y (t ) x ′(t )dt , Vy = 2π ∫ t2 t1 x (t ).y (t ) x ′(t )dt Ví dụ Tính diện tích miền D giới hạn bởi: 3 x = cos t , y = sin t ,0 ≤ t ≤ π trục hoành t ∈ [0, π ] ⇒ x ∈ [−1,1] S (D) = ∫ −1 ydx = ∫π sin t3cos t ( − sin t )dt π (sin t − sin t )dt = 6∫ 3π = 16 Ví dụ D: 3 x = cos t , y = sin t ,0 ≤ x ≤ π trục hoành Tính thể tích tạo D quay quanh Ox, Oy Nhận xét: D đối xứng qua Oy (thay x π - x ) t ∈ [0, π / 2] ⇒ x ∈ [0,1] Vx = 2. π = 2π ∫ π y dx ÷ ∫ 2 y (t ) x ′(t )dt Vx = 2π ∫ = 6π Vy = 2π = 2π π sin t3cos t ( − sin t )dt π (sin t − sin t )dt ∫ ∫ ∫ 0 x.y dx π cos 3 t sin t3cos t ( − sin t )dt Độ dài đường cong phẳng Diện tích mặt tròn xoay Cho đường cong C: y= f(x), a ≤ x ≤ b Độ dài đường cong C: L= ∫ b a + [ f ′( x ) ] dx Khi C quay quanh Ox tạo thành diện tích : Sx = 2π ∫ b a f ( x ) + [ f ′( x ) ] dx Ví dụ x ( x − 12),0 ≤ x ≤ 12 Cho đường cong C: y = Tính độ dài đường cong diện tích mặt tạo C quay quanh Ox x − 12 3x − 12 x − y′ = + x = = 6 x x x ( x − 4) 1+ y′ = 1+ 16 x 2 ( x − 4) 1+ y′ = 1+ 16 x L= ∫ 12 Sx = 2π = ∫ 12 2 + y ′ dx = ∫ 12 x + x + 16 ( x + 4) = = 16 x 16 x ∫ +4 dx x 12 x y + y ′ dx x x+4 ( x − 12) dx x Ví dụ Cho đường cong C: y = ln x , ≤ x ≤ Tính diện tích mặt tròn xoay tạo C quay quanh Oy y y = ln x , ≤ x ≤ ⇔ x = e ,0 ≤ y ≤ ln Sy = 2π ∫ f ( y ) + [ f ′( y ) ] dy ln y e = 2π ∫ 2y + e dy ln y e S y = 2π ∫ = 2π ∫ 2y + e dy + x dx ( = 5− + ln(2 + 5) − ln(1 + 2) 2 ) Bài toán độ dài cung diện tích mặt tròn xoay với đường cong tham số Cho đường cong C: x = x(t), y = y(t), t1≤ t ≤ t2 L=∫ t2 t1 t2 [ x′(t)] S x = ∫ y(t) t1 + [ y′(t ) ] dt [ x′(t)] 2 + [ y′(t ) ] dt ... − 12 ),0 ≤ x ≤ 12 Cho đường cong C: y = Tính độ dài đường cong diện tích mặt tạo C quay quanh Ox x − 12 3x − 12 x − y′ = + x = = 6 x x x ( x − 4) 1+ y′ = 1+ 16 x 2 ( x − 4) 1+ y′ = 1+ ... 1+ y′ = 1+ 16 x 2 ( x − 4) 1+ y′ = 1+ 16 x L= ∫ 12 Sx = 2π = ∫ 12 2 + y ′ dx = ∫ 12 x + x + 16 ( x + 4) = = 16 x 16 x ∫ +4 dx x 12 x y + y ′ dx x x+4 ( x − 12 ) dx x ... − f1 ( x ) dx Bài toán diện tích d D: c ≤ y ≤ d, nằm f(y) x = f (y ) S (D) = ∫ d c f ( y ) dy c Bài toán diện tích D: c ≤ y ≤ d, nằm f1(y) f2(y) S (D) = ∫ d c d f2 ( y ) − f1 ( y ) dy x = f1 (