1. Trang chủ
  2. » Khoa Học Tự Nhiên

Bài tập công thức lượng giác

40 1K 11

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 3,6 MB

Nội dung

10   2   Page - 1 - Chương  NG   1/ 2 2 2 cos x sin x 1 2sin x- = - . 2/ 22 2cos x 1 1 2sin x- = - . 3/ 22 3 4sin x 4cos x 1- = - . 4/ sinxcot x cosxtanx sinx cosx+ = + . 5/ 4 4 2 2 sin x cos x 1 2sin xcos x+ = - . 6/ 4 4 2 2 cos x sin x cos x sin x- = - . 7/ ( )( ) 2 4cos x 3 1 2sin x 1 2sinx- = - + . 8/ ( ) ( ) 2 2 2 1 cosx sin x cosx cos x sin x+ - + = . 9/ 4 4 2 2 sin x cos x 1 2cos x 2sin x 1- = - = - . 10/ 33 sin xcosx sinxcos x sinxcosx+= . 11/ 2 2 2 2 tan x sin x tan xsin x-= . 12/ 2 2 2 2 cot x cos x cot xcos x-= .   1/ 1 tan x cot x sinxcosx += . 2/ 1 cosx sin x sin x 1 cosx - = + . 3/ 11 1 1 tan x 1 cot x += ++ . 4/ 2 11 1 1 tan x 0 cosx cosx æ öæ ö ÷÷ çç ÷÷ - + + = çç ÷÷ çç ÷÷ çç è øè ø . 5/ 2 2 2 1 sin x 1 2tan x 1 sin x + =+ - . 6/ tan x tan y tan xtan y cot x cot y + = + . 7/ 4 24 21 1 cot x sin x sin x - = - . 8/ cosx 1 tan x 1 sin x cosx += + . 9/ ( ) ( ) 2 1 1 cosx 1 cot x 1 cosx - + = + . 10/ 1 cosx 1 cosx 4cot x 1 cosx 1 cosx sin x +- -= -+ . 11/ sin x 1 cosx 2 1 cosx sin x sin x + += + . 12/ sin x cosx 1 cosx sin x cosx 1 1 sin x +- = - + + . 13/ 2 2 sin x 2cosx 1 cosx 1 cosx 2 cosx cos x +- = + +- . 14/ sin x cosx 1 2cosx 1 cosx sin x cosx 1 +- = - - + .  5    .  .  .   .  .  5.  Page - 2 - "  "   1/ 6 6 2 2 sin x cos x 1 3sin xcos x+ = - . 2/ ( )( ) 6 6 2 2 2 2 sin x cos x sin x cos x 1 sin xcos x- = - - . 3/ ( ) 2 8 8 2 2 4 4 sin x cos x 1 2sin xcos x 2sin xcos x+ = - - . 4/ ( )( ) 8 8 2 2 2 2 sin x cos x sin x cos x 1 2sin xcos x- = - - .   1/ ( )( ) 1 sin x cosx tan x 1 cosx 1 tanx+ + + = + + . 2/ ( )( ) 1 tan x 1 cot x sin xcosx 1 2sin xcosx+ + = + . 3/ ( ) ( ) ( ) 2 22 1 tan x cos x 1 cot x sin x sin x cosx+ + + = + . 4/ 22 sin xtanx cos xcot x 2sinxcosx tanx cot x+ + = + . 5/ 2 2 2 2 2 sin xtan x 4sin x tan x 3cos x 3+ - + = .   1/ 22 sin cos tan 1 1 2sin cos tan 1 a - a a - = + a a a + . 2/ 22 6 22 tan sin tan cot cos a - a =a a - a . 3/ 22 cos sin 1 sin cos 1 tan 1 cot aa + = - a a - a - a . 4/ ( ) 3 tan sin 1 sin cos 1 cos a - a = a a + a . 5/ 22 22 1 tan cot 2 sin cos = a + a + aa . 6/ 2 2 22 1 3tan tan 1 cos cos a - a = + aa . 7/ 2 2 2 2 2 2 2 2 tan tan sin sin tan tan sin sin a - b a - b = a b a b . 8/ ( ) 2 2 1 cos 1 cos 1 2cot sin sin éù +a êú -a êú - = a êú a a êú ëû . 9/ ( ) ( ) 2 1 1 cos 1 cot 1 cos - a + a = +a . 10/ 23 3 sin cos 1 tan tan tan cos a + a + a + a + a = a . 11/ 2 2 sin cos 1 cot sin cos cos sin 1 cot a a + a -= a + a a - a -a . 12/ 2 2 4 2 2 2 2 tan 1 cot 1 tan . 1 tan cot tan cot a + a + a = + a a a + a . 13/ 2 2 1 sin 1 sin 4tan 1 sin 1 sin æö ÷ + a - a ç ÷ ç - = a ÷ ç ÷ ç - a + a ÷ ç èø . 14/ 2 2 1 cos 1 cos 4cot 1 cos 1 cos æö ÷ + a - a ç ÷ ç - = a ÷ ç ÷ ç - a + a ÷ ç èø .   1/ 4 2 2 1 P sin sin cos= a + a a . 2/ 4 4 2 2 P sin cos cos= a - a + a . 3/ 2 2 2 3 P sin sin cot= a + a a . 4/ 2 2 2 4 P cos cos cot= a + a a . 5/ ( ) 2 2 2 5 P 1 sin cot 1 cot= - a a + - a . 6/ 22 6 P sin tan cos cot 2sin cos= a a + a a + a a . 10   2   Page - 3 - 7/ 2 7 2cos 1 P sin cos a- = a + a . 8/ 8 2 1 cos 1 P 1 cos sin -a =- +a a . 9/ 9 cot cot P tan tan a + b = a + b . 10/ 10 cos P tan 1 sin a = a + +a . 11/ 11 sinx tan x P sinxcot x tan x + =- . 12/ 12 2 cosxtan x P cot xcosx sin x =- . 13/ 22 13 22 cos x cot x P sin x tan x - = - . 14/ 22 2 14 2 1 sin x cos x P cos x cos x - =- . 15/ 32 15 sin x sin xcos x cosx P 1 2sin xcosx +- = - . 16/ ( ) 2 16 sin x cosx 1 P tan x sin xcosx +- = - . 17/ 2 2 2 17 2 2 2 sin x sin xtan x P cos x cos x tan x + = + . 18/ 22 2 18 2 cot x cos x P 1 cos x cot x - = + - . 19/ 22 22 19 22 cos x sin y P cot xcot y sin xsin y - =- . 20/ 20 1 sin x cosxcot x P sin x 1 cot x 1 tan x = - - ++ . 21/ 21 1 cosx 1 sinx P tan x cot x sinx cosx = + + + . 22/ 22 11 P 1 cot x 1 cot x sin x sin x æ öæ ö ÷÷ çç ÷÷ = + + + - çç ÷÷ çç ÷÷ çç è øè ø . 23/ ( ) ( ) 22 23 P 1 tanx cos x 1 cot x sin x= + + + . 24/ 24 22 1 P , 0 x 2 sinx cot x cos x æö p ÷ ç ÷ = < < ç ÷ ç ÷ ç èø .   1/ 2 A 2cos x 1=- . 2/ 2 B 3 4sin x=- . 3/ 2 C sin xcosx cos x 1= + - . 4/ 2 D sin x sin xcosx 1= + - . 5/ E 1 sinx cosx tan x= + + + . 6/ F tan x cot x sinx cosx= - + + . 7/ ( ) 2 G cosxtan x 1 cosx= - + . 8/ ( ) ( ) 2 H 3 4cos x sinx 2sinx 1= - - + . 9/ 22 I sin x 3cos x 6cosx 2sinx= - + - . 10/ 33 J cos x sin x sinx cosx= - + + . 11/ 32 K cos x cos x 2sin x 2= + + - . 12/ 23 L cos x sin x cosx= + + . 13/ ( ) 2 M 1 cosx cos x sinx 1 cosx= + + - + .  5.  Page - 4 - "  " 14/ 32 N 2cos x 2cos x sin x 1= + + - . 15/ 3 3 2 O cos x sin x 2sin x 1= + + - . 16/ ( )( ) 2 P 2sinx 1 2cosx 2sinx 1 3 4cos x= - + + - + . 17/ ( )( ) Q 2cosx 1 sinx cosx 1= - + - . 18/ 3 3 2 R 4sin x 3cos x 3sinx sin xcosx= + - - . 19/ ( ) ( ) 2 S 1 sin x tan x 1 cosx= + - + . 20/ ( ) 2 T 2 5sinx 3 1 sinx tan x= - + - . 21/ 2 U 2sin xcosx 2sin x 3sin x cosx 1= - + - - . 22/ ( ) V tan x 3cot x 4 sinx 3 cosx= - - + . 23/ X 3sinx 2cosx 3tan x 2= + - - . 24/ ( ) ( ) Y 2 tan x sinx 3 cot x cosx 5= - + - + . 25/ ( ) ( ) Z 3 cot x cosx 5 tan x sin x 2= - - - - .   1/ 4 4 2 A cos x sin x 2sin x= - + . 2/ 4 2 2 2 B sin x sin xcos x cos x= + + . 3/ 4 2 2 2 C cos x sin xcos x sin x= + + . 4/ ( ) ( ) 4 2 4 2 D cos x 2cos x 3 sin x 2sin x 3= - + - . 5/ 6 6 4 4 2 E sin x cos x 2sin x cos x sin x= + - - + . 6/ 11 F sin x. , 0 x 1 cosx 1 cosx 4 æö p ÷ ç ÷ = + < < ç ÷ ç ÷ ç +- èø . 7/ 4 2 4 2 G sin x 4cos x cos x 4sin x= + + + . 8/ 2 2 2 2 2 H cos xcot x 5cos x cot x 4sin x= + - + . 9/ ( ) ( ) 33 I 1 cot x sin x 1 tan x cos x sinx cosx= + + + - - . 10/ ( )( ) 4 4 2 2 J sin x cos x 1 tan x cot x 2= + - + + . 11/ ( ) ( ) 8 8 6 6 4 K 3 sin x cos x 4 cos x 2sin x 6sin x= - + - + . 12/ ( ) ( ) 4 2 4 2 2 2 L sin x 1 sin x cos x 1 cos x 5sin x cos x 1= + + + + + . 13/ ( ) ( ) 2 4 4 2 2 8 8 M 2 sin x cos x sin x cos x sin x cos x= + + - + . 10   2   Page - 5 -   1/ 2 cot x 1 A tan x 1 cot x 1 + =+ . 2/ ( ) 2 2 2 2 2 1 tan x 1 B 4tan x 4sin xcos x - =- . 3/ ( )( ) 2 22 1 tan x C 1 tan x 1 cot x tan x - = - + + . 4/ ( ) 2 2 2 2 2 1 cot x 1 D cot x sin x cos x - =- . 5/ 62 62 1 sin x 3tan x E cos x cos x - =- . 6/ 2 2 2 2 22 tan x cos x cot x sin x F sin x cos x =+ . 7/ 22 2 cot x cos x sin xcosx G cot x cot x - =+ . 8/ 44 66 sin x cos x 1 H sin x cos +- = + .  Cho ( ) ( ) f x 2 1 cosx ,=- ( ) g x 2 cosx 3.sinx,= + - ( ) h x 2 cosx 3.sinx= + +   ( ) ( ) ( ) 2 2 2 A f x g x h x ,= + + ( ) ( ) ( ) 4 4 4 B f x g x h x ,= + + ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 C f x .g x g x .h x h x .f x= + + .  Cho a sinxsiny bcosxcosy 0-=  2 2 2 2 11 Q a sin x bcos x a sin y bcos y =+ ++   Cho ( ) 6 6 4 4 Q sin x cos x m sin x cos x= + - +  Q   Q     Cho 44 sin x cos x 1 a b a b += +  1/ ( ) 88 3 3 3 sin x cos x 1 ab ab += +  1) 2/ ( ) 10 10 4 4 4 sin x cos x 1 ab ab += +    5.  Page - 6 - "  "  B    10   2   Page - 7 - NG    2 3 5 7 13 3 15 , , , , , , , 2, , 3 4 9 5 3 3 4 7 15 p p p 9p p p p p p - .   ( ) rad : 0 0 0 0 0 0 0 0 0 90 , 36 , 15 , 72 , 270 , 240 , 540 , 750 , 21 .   0 0 0 21 30', 75 54', 12 36' 0 0 0 , 15 30', 105 45'30'', 27 38'49''- .   ( ) 2 rad p  2,5p .   0 0 0 15 0 30 0 45 0 60 0 75 0 90 0 120 0 150 0 180 16 p 8 p 6 p 5 12 p 2 p 2 3 p 3 4 p 5 6 p p 4 3 p Radian 7 4 p 12 p 5 6 p - 2 p 2 3 p 3 4 p  0 135 0 50- 0 810    ( ) 10 cm  ( ) 00 2 3 7 13 3 3 , , , , , 2 , , 45 , rad , 75 3 18 5 3 6 4 2 p p p p p p -p .   ( ) 7 cm  ( ) 10 cm   30 t.   ( ) 55 cm  ( ) /40 km h     ( ) 1,75 m  ( ) 1,26 m  15     5.  Page - 8 - "  "   0 0 0 0 0 30 , 45 , 120 , 120 , 330 , 0 0 0 0 0 7 4 15 2010 630 , 750 , 1250 , , , 750 , 1125 , , 4 3 2 4 p p p p - - - .   ( ) k2 , k , k , k , k , k 2 3 4 ppp p p Î ¢ .   k Î ¢ . 1/ xk=p . 2/ x k2 2 p = + p . 3/ x 4k=p . 4/ xk 3 p = + p . 5/ x k2 6 p = - + p . 6/ xk 4 p = - + p . 7/ k x 3 p = . 8/ k2 x 33 pp =+ . 9/ k3 x 44 pp =+ . 10/ k x 63 pp =+ .   ¼ đs AM 6 p =  ¼ đ k s AN 798 p =  k Î ¢  k Î ¥  1 2   35 3 p  m 5 p      1/ sinx, cosx, tan x, cot x  3 x 2 p p < < . 2/ 3 sin x , cos x , tan x , cot x 4 2 2 2 æ ö æ ö æ ö æ ö p p p p ÷ ÷ ÷ ÷ ç ç ç ç ÷ ÷ ÷ ÷ + - - + ç ç ç ç ÷ ÷ ÷ ÷ ç ç ç ç ÷ ÷ ÷ ÷ ç ç ç ç è ø è ø è ø è ø  0x 2 p << . 3/ ( ) 00 A sin 40 .cos 290=- . 4/ ( ) 00 B sin 25 .cos170=- . 5/ ( ) 0 0 0 C sin225 .tan130 .cot 175=- . 6/ ( ) 0 0 0 D cos195 .tan269 .cot 98=- . 7/ ( ) 00 E sin50 .cos 300=- . 8/ 0 21 F sin215 .tan 7 p = . 9/ 32 G cot .sin 53 æö pp ÷ ç ÷ =- ç ÷ ç èø . 10/ os 4 4 9 H c .sin .tan .cot 5 3 3 5 p p p p = .   1/ 1 sin x 2 =  00 90 x 180<< . 2/ 4 sin x 5 =-  00 270 x 360<< . 10   2   Page - 9 - 3/ 3 sin x 5 =-  3 x 2 p p < < . 4/ 1 cosx 4 =  0x 2 p << . 5/ 3 cosx 5 =  0 0 x 90<< . 6/ 5 cosx 13 =-  00 180 x 270<< . 7/ 2 cosx 5 =  x0 2 p - < < . 8/ 4 cosx 5 =  00 270 x 360<< . 9/ 5 sin x 13 =  x 2 p < < p . 10/ 1 sin x 3 =-  00 180 x 270<< . 11/ tanx 3=  3 x 2 p p < < . 12/ tanx 2=-  x 2 p < < p . 13/ 1 tan x 2 =-  x 2 p < < p . 14/ cot x 3=  3 x 2 p p < < . 15/ 3 tan x 4 =  3 x 2 p p < < . 16/ tanx 2=-  x 2 p < < p . 17/ 2 cot x 3 =  0x 2 p << . 18/ cot x 3=-  x 2 p < < p . 19/ cot x 3=-  3 x2 2 p < < p . 20/ 0 cot15 2 3=+   1/ Cho tanx 2=-  12 5cot x 4tan x 2sinx cosx A , A 5cot x 4tan x cosx 3sinx ++ == . 2/ Cho cot x 2=  12 3sin x cosx sin x 3cosx B , B sin x cosx sin x 3cosx == ++ . 3/ Cho cot x 2=  12 2 2sin x 3cosx 2 C , C 3sin x 2cosx cos x sinxcosx + == - - . 4/ Cho tanx 2=  1 2sinx 3cosx D, 4sinx 5cosx + = - 2 33 3sin x 2cosx D, 5sin x 4cos x - = + 33 3 2 sin x cos x D, sin x sin xcosx - = + 4 33 sin x 5cosx D, sin x 2cos x + = - 33 5 3 8cos x 2sin x cosx D, 2cosx sin x -+ = - 33 6 32 sin x 2cos x 2sin x 3cosx D sin x cos x 5sinx - + + = -+ . 5/ Cho 3 sinx , 0 x 52 p = < <  cot x tan x E cot x tanx + = - . 6/ Cho 00 1 sinx , 90 x 180 3 = < <  2 8tan x 3cot x 1 F tan x cot x +- = + . 7/ Cho 2 cosx 3 =-  cot x 3tan x G 2cot x tan x + = + .  5.  Page - 10 - "  " 8/ Cho 0 2 sinx , 0 x 90 3 = < <  12 2 tan x cosx tan x cosx H , H cosxcot x cot x sin x - = = - . 9/ Cho 4 cosx , x 52 p = - < < p  12 cot x tan x sin x I , I cot x cot x tan x 1 cosx + = = + -+ .  Cho 5 sinx cosx 4 +=  1/ A sinx.cosx= . : 9 A 32 = . 2/ B sinx cosx=- . : 7 B 4 =± . 3/ 33 C sin x cos x=- . : 41 7 C 128 =± .  Cho tanx cot x 3-=  1/ 22 A tan x cot x=+ . : A 11= . 2/ B tanx cot x=+ . : B 13=± . 3/ 44 C tan x cot x=- . : C 33 13=± .  Cho sinx cosx m+=  1/ A sinxcosx= . 2/ 33 B sin x cos x=+ . 3/ 44 C sin x cos x=+ . 4/ D sin x cosx=- . 5/ 22 E tan x cot x=+ . 6/ 66 F sin x cos x=+ .   sinx, cosx, tan x, cot x  1/ sin x cosx 2+= . 2/ sinx cosx 2-= . 3/ 1 sinx cosx 2 += .   4/ 1 sinx cosx 5 += . : 4 3 4 3 ; ; ; 5 5 3 4 - - - . 5/ tanx cot x 4+= . : 1 2 3 ; ; 2 3; 2 3 2 2 2 3 - +- - .  Cho tanx 2cot x 1- = -  1/ 22 A tan x cot x=- . 2/ 33 B tan x cot x=+ . 3/ 44 C tan x 2cot x=+ . 4/ 55 D tan x 3cot x=- .   1/ Cho 44 3 3sin x cos x 4 +=  44 A sin x 3cos x=+ . : A 7 4 = . [...]... bc + ca à A B B C C A tan tan + tan tan + tan tan = 1 2 2 2 2 2 2 5/ r 2 æ A ö çtan + tan B + tan C ÷ à s d ÷ ç ÷ ç è 2 2 2ø 3/ Page - 21 - à s Lê Vă 5 à – D – CÔNG THỨC NHÂN  Công thức nhân đôi     Công thức hạ bậc Công thức nhân ba ở r       NG R T G N VÀ T NH GIÁ TR C A BI U THỨC r s 1/ A = cos2 3/ 5/ 7/ p p - sin2 8 8 B = 3cos100 - 4cos3 100 C = sin 200 1... 4cos x - sin x - 1 7/ G = (2cos x - 1)(sin x + cos x)- 1 8/ H = 2sin 2x - cos2x - 7 sin x - 2cos x + 4 E – CÔNG THỨC BIẾN Đ I Page - 29 - à s Lê Vă 5 à –   Công thức biến đổi tổng thành tích ● ● ● ● ● ● ● ●  ● ●  Công thức biến đổi tích thành tổng ● ● ● NG CÔNG THỨC BIẾN Đ I T NG THÀNH T CH r 1/ A= cos2x - cos 4x khi x = 200 sin 4x - sin 2x 2/ B= cos x.cos13x... = æ 1 1 1 pö ÷ 1 + sin x + 1 - sin x, ç0 < x < ÷ 16/ P = + + + cot 8x ç ÷ ç 4÷ sin 2x sin 4x sin 8x è ø 17/ O = æ p pö ÷ 1 - sin 2x + 1 + sin 2x, ç- < x < ÷ ç ÷ ç 4 ÷ 4ø è Tính giá tr c a bi u th ng giác, khi bi t 3 p , < x< p 5 2 1/ sin 2x, cos2x khi sin x = 2/ sin 2x, cos2x khi sin x + cos x = 2 Page - 24 - "A e f wer f rr w re e see s f d y " 10 – 2 s Lê Vă 5 3p ,p< x< 13 2 3/ cos2x, sin 2x,... sin 2x, tan 2x khi tan x = 2 5/ sin x, cos x khi sin 2x = - 6/ cos2x, sin 2x, tan 2x khi tan x = 7/ sin 2x, cos2x, tan 2x khi tan x = 2 - Tính giá tr c a bi u th 4 p 3p , < x< 5 2 2 7 8 3, 0 < x < ng giác, khi bi t p 16 1/ A = sin5 x cos x - cos5 x sin x 2/ B = sin 4 x + sin 3 x cos x - cos3 x sin x + cos4 x 3/ C = cos4x 4/ D = cos 2700 + 4x 5/ E = sin 4 x + cos4 x 6/ F= sin 180 = x= p 48 ( 2/ )... 14 - - 3A + B + C = - sin 2A 2 A + B + 3C = cosC 2 10/ tan A + B - 2C 3C = cot 2 2 A + 3B + C = - sin B 2 12/ cot A - 2B + C 3B = tan 2 2 "A e f wer f rr w re e see s f d y " 10 – 2 s Lê Vă à C – CÔNG THỨC C NG        :   NG d y y r 1/ A = sin120.cos 480 + cos120.sin 480 2/ B = cos380.cos220 - sin 380.sin 220 3/ C = sin100.cos550 - cos100.sin 550 4/ D = sin 360.cos60 - sin1260.cos840... sin 2C = 4sin Asin Bsin C A B C sin sin 2 2 2 5/ 1 + cos2A + cos2B + cos2C = - 4cos Acos BcosC 6/ sin2 A + sin2 B + sin2 C = 2(1 + cos Acos BcosC) 7/ cos2 A + cos2 B + cos2 C = 1 - 2cos A cos B cosC CÔNG THỨC BIẾN Đ I T CH THÀNH T NG à 1/ p 2p A = sin sin 5 5 2/ B = sin 5x cos3x 3p p cos 4 6 4/ D = sin E = sin (x + y)cos (x - y) 6/ F = sin x + 300 cos x - 300 8/ H = 8cosx sin2x sin 3x 3/ C

Ngày đăng: 06/06/2015, 13:28

TỪ KHÓA LIÊN QUAN

w