1. Trang chủ
  2. » Luận Văn - Báo Cáo

SKKN: Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác

42 401 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 42
Dung lượng 1,4 MB

Nội dung

MỤC LỤC 1. TÓM TẮT ĐỀTÀI Trang 2 2. GIỚI THIỆU Trang 2 3. PHƯƠNG PHÁP Trang 3 3.1. Khách thể nghiên cứu Trang 3 3.2. Thiết kế nghiên cứu Trang 3 3.3. Quy trình nghiên cứu Trang 3 3.4. Đo lường và thu thập dữ liệu Trang 4 4. PHÂN TÍCH DỮ LIỆU VÀ BÀN LUẬN KẾT QUẢ Trang 4 5. KẾT LUẬN VÀ KHUYẾN NGHỊ Trang 6 TÀI LIỆU THAM KHẢO Trang 7 PHỤ LỤC CHUẨN BỊ CỦA GIÁO VIÊN Trang 8 PHỤ LỤC ĐỀ KIỂM TRA TRƯỚC TÁC ĐỘNG Trang 26 PHỤ LỤC ĐỀ KIỂM TRA SAU TÁC ĐỘNG Trang 29 PHỤ LỤC BẢNG ĐIỂM Trang 31 PHIẾU ĐÁNH GIÁ CỦA TỔ CHUYÊN MÔN Trang 34 PHIẾU ĐÁNH GIÁ CẤP TRƯỜNG Trang 37 PHIẾU ĐÁNH GIÁ CẤP TỈNH Trang 40

Trường THPT Lộc Hưng Năm học 2014 – 2015 MỤC LỤC 1. TÓM TẮT ĐỀTÀI Trang 2 2. GIỚI THIỆU Trang 2 3. PHƯƠNG PHÁP Trang 3 3.1. Khách thể nghiên cứu Trang 3 3.2. Thiết kế nghiên cứu Trang 3 3.3. Quy trình nghiên cứu Trang 3 3.4. Đo lường và thu thập dữ liệu Trang 4 4. PHÂN TÍCH DỮ LIỆU VÀ BÀN LUẬN KẾT QUẢ Trang 4 5. KẾT LUẬN VÀ KHUYẾN NGHỊ Trang 6 TÀI LIỆU THAM KHẢO Trang 7 PHỤ LỤC CHUẨN BỊ CỦA GIÁO VIÊN Trang 8 PHỤ LỤC ĐỀ KIỂM TRA TRƯỚC TÁC ĐỘNG Trang 26 PHỤ LỤC ĐỀ KIỂM TRA SAU TÁC ĐỘNG Trang 29 PHỤ LỤC BẢNG ĐIỂM Trang 31 PHIẾU ĐÁNH GIÁ CỦA TỔ CHUYÊN MÔN Trang 34 PHIẾU ĐÁNH GIÁ CẤP TRƯỜNG Trang 37 PHIẾU ĐÁNH GIÁ CẤP TỈNH Trang 40 Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 1 - Trường THPT Lộc Hưng Năm học 2014 – 2015 1. TÓM TẮT ĐỀ TÀI Trong các đề thi tốt nghiệp trung học phổ thông, đại học, cao đẳng, trung cấp chuyên nghiệp của các năm, bài toán tính tích phân hầu như không thể thiếu nhưng đối với học sinh phổ thông bài toán tích phân là bài toán khó và đặc biệt khó hơn là bài toán tích phân hàm lượng giác. Học sinh cảm thấy khó vì phải nhận dạng tích phân đồng thời phải biết áp dụng công thức biến đổi lượng giác thích hợp. Các em mất thời gian nếu không biết áp dụng công thức biến đổi thích hợp, các em thiếu tự tin ngay cả khi mình giải ra được đáp số. Trước thực trạng đó, trước khi học chương nguyên hàm tích phân tôi đã yêu cầu học sinh ôn lại các công thức lượng giác thường dùng như các hệ thức cơ bản, công thức hạ bậc, công thức biến đổi tích thành tổng…Ôn lại công thức đạo hàm. Học thuộc công thức nguyên hàm đặc biệt là công thức nguyên hàm mở rộng. Hướng dẫn học sinh cách nhớ phân biệt giữa đạo hàm và nguyên hàm của sinx, cosx dựa vào đường tròn lượng giác. Sắp xếp bài toán cùng dạng từ dễ đến khó trình bày ví dụ minh họa có giải thích cụ thể rõ ràng, cho bài tập tương tự có đáp án từ đó giúp học sinh nắm được dạng cùng cách giải với độ chính xác cao dần. Giải pháp này được tiến hành trên hai lớp: lớp 12B1 (nhóm thực nghiệm) và 12B2 (nhóm đối chứng) trường THPT Lộc Hưng. Lớp thực nghiệm thực hiện giải toán có hướng dẫn học sinh nhận dạng. Lớp đối chứng thực hiện theo công thức định nghĩa tích phân. Kết quả cho thấy: tác động của giải pháp này có ảnh hưởng lớn đến kết quả học tập của học sinh, lớp thực nghiệm đã đạt kết quả cao hơn so với lớp đối chứng. Điểm bài kiểm tra đầu ra của lớp thực nghiệm là 6.9473684; lớp đối chứng là 5.8611111. Kết quả kiểm chứng t-test cho thấy p = 0.013744 < 0,05 có nghĩa là có sự khác biệt lớn giữa điểm của lớp thực nghiệm và lớp đối chứng. Điều đó cho thấy rằng việc giải bài toán tính tích phân hàm lượng giác bằng cách phân dạng giúp học sinh nhận được dạng và giải được bài toán chính xác. 2. GIỚI THIỆU Tích phân hàm lượng giác là dạng toán hay đòi hỏi người học phải có tư duy cao, phải có năng lực biến đổi lượng giác nhanh nhẹn thuần thục. Đây là dạng toán nằm trong chương trình thi tốt nghiệp cũng như thi đại học – cao đẳng. Khi học phần này học sinh thường gặp khó khăn vì phải áp dụng công thức lượng giác (đã học cuối năm lớp 10) và công thức nguyên hàm (học ở học kì II lớp 12) Giải pháp thay thế: Khi dạy về phần này ngoài việc yêu cầu học sinh ôn lại công thức lượng giác thường dùng giáo viên phân dạng mỗi dạng có ví dụ minh họa cùng lời giải chi tiết giải thích rõ ràng, giải bài toán bằng nhiều cách (nếu có), soạn bài tập tương tự có hướng dẫn giải đối với các bài khó, có đáp án. Hướng dẫn học sinh sử dụng máy tính cầm tay để kiểm tra kết quả. Kiểm tra tập bài tập thường xuyên, phát hiện và chỉnh sửa kịp thời cho học sinh từ đó hình thành thói quen cho học sinh giải bài toán. Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 2 - Trường THPT Lộc Hưng Năm học 2014 – 2015 Vấn đề nghiên cứu: Giải pháp “Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác” Giả thiết nghiên cứu: bằng cách phân dạng sẽ nâng cao kết quả học tập của HS lớp 12 trường THPT Lộc Hưng phần tích phân hàm số lượng giác. 3. PHƯƠNG PHÁP 3.1. Khách thể nghiên cứu Tôi lựa chọn hai lớp 12B1 và 12B2 vì có những thuận lợi cho việc áp dụng giải pháp này. - Giáo viên: Hai giáo viên dạy lớp có tuổi nghề tương đương, có lòng yêu nghề, có tinh thần trách nhiệm đối với giảng dạy và giáo dục HS. 1. Nguyễn Thị Phương Toàn – GV dạy lớp 12B1 (lớp thực nghiệm) 2. Huỳnh Thị Hồng Anh – GV dạy lớp 12B2 (lớp đối chứng) - Học sinh: Hai lớp được chọn tham gia nghiên cứu cũng có nhiều điểm tương đồng; cụ thể: hầu hết các em này có học lực trung bình khá, ham học hỏi. 3.2. Thiết kế nghiên cứu - Lựa chọn thiết kế: kiểm tra trước và sau tác động với hai nhóm tương đương. - Chúng tôi cho học sinh làm bài kiểm tra trước tác động. Kết quả kiểm tra cho thấy điểm trung bình của hai lớp 12B1 và 12B2 có sự tương đương nhau. Chúng tôi dùng phép kiểm chứng T-Test độc lập để kiểm chứng sự tương đương điểm số trung bình của hai lớp trước khi tác động.  Bảng kiểm chứng để xác định hai lớp tương đương: Thực nghiệm (Lớp 12B1) Đối chứng (lớp 12B2) Trung bình cộng 5.7368421 5.7777778 P 1 = 0.9294062 P 1 = 0.9294062 > 0.05 từ đó kết luận sự chênh lệch điểm số trung bình của hai lớp thực nghiệm và đối chứng là không có ý nghĩa, hai lớp được coi là tương đương.  Thiết kế nghiên cứu: Lớp Kiểm tra trước tác động Tác động Kiểm tra sau tác động Thực nghiệm (Lớp 12B1) O1 Dạy học có phân dạng, sắp xếp bài tập tương tự từ dễ đến khó O3 Đối chứng (Lớp 12B2) O2 Dạy học theo sách giáo khoa, dùng công thức tính O4 Ở thiết kế này chúng tôi sử dụng phép kiểm chứng T-Test độc lập. 3.3. Quy trình nghiên cứu:  Chuẩn bị bài dạy của giáo viên: - Giáo viên dạy Toán lớp 12B2 là lớp đối chứng sửa bài tập trong sách giáo khoa chỉ dùng công thức định nghĩa tích phân và các công thức đổi biến. Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 3 - Trường THPT Lộc Hưng Năm học 2014 – 2015 - Giáo viên dạy Toán lớp 12B1 là lớp thực nghiệm, giúp học sinh nhận dạng bằng cách phân dạng, sắp xếp bài tập theo dạng từ dễ đến khó, có bài tập tương tự có đáp án giúp học sinh tự luyện.  Tiến hành dạy thực nghiệm: Tuân theo kế hoạch giảng dạy của nhà trường và thời khóa biểu để đảm bảo tính khách quan: Với lớp đối chứng dạy chính khoá và tăng tiết bình thường (dùng công thức giải), còn lớp thực nghiệm ở ví dụ tôi giúp học sinh nhận dạng, nêu rõ lí do vì sao ta phải làm như vậy sau đó cho bài tập sắp xếp từ dễ đến khó có đáp án để học sinh tự luyện rồi đến tiết tăng tiết tôi giải thêm ví dụ, ôn lại các dạng bài tập và sửa bài tập cho các em. 3.4. Đo lường và thu thập dữ liệu: - Bài kiểm tra trước tác động do giáo viên nhóm Toán lớp 12 của trường THPT Lộc Hưng thống nhất. - Bài kiểm tra sau tác động là bài kiểm tra sau khi học xong bài tích phân và bài tập ôn chương cũng do nhóm giáo viên trên ra đề kiểm tra. Kiểm tra bằng hình thức tự luận, nội dung gồm 4 bài tập: tính tích phân hàm lượng giác, 1 bài ở mức độ nhận biết, 2 bài thông hiểu, 1 bài vận dụng.  Tiến hành kiểm tra và chấm bài - Sau khi thực hiện dạy xong các nội dung đã nêu ở trên, chúng tôi tiến hành bài kiểm tra 1 tiết (nội dung kiểm tra như đã trình bày ở trên). - Sau đó 2 giáo viên tiến hành chấm bài theo hướng dẫn đã thiết kế. 4. PHÂN TÍCH DỮ LIỆU VÀ BÀN LUẬN KẾT QUẢ 4.1 PHÂN TÍCH DỮ LIỆU VÀ KẾT QUẢ  Bảng so sánh điểm trung bình bài kiểm tra sau tác động: Thực nghiệm (Lớp 12B1) Đối chứng (lớp 12B2) ĐTB 7 5.8611111 Độ lệch chuẩn 1.3949717 1.8693433 Giá trị P của T - test 0.0082686 Chênh lệch giá trị TB chuẩn(SMD) 0.8164244 Như trên đã chứng minh rằng kết quả 2 nhóm thực hiện trước tác động là tương đương. Sau tác động kiểm chứng chênh lệch ĐTB bằng T – test cho kết quả P = 0.0082686, cho thấy: sự chênh lệch kết quả ĐTB nhóm thực nghiệm và nhóm đối chứng rất có ý nghĩa, tức là sự chênh lệch kết quả ĐTB nhóm thực nghiệm cao hơn ĐTB nhóm đối chứng là không ngẫu nhiên mà do kết quả đạt được của tác động. Chênh lệch giá trị trung bình chuẩn SMD = 7 5,8611111 0,8164244 1,3949717 − ≈ . Điều đó cho thấy mức độ ảnh hưởng của dạy học có hướng dẫn học sinh cách nhớ ảnh hưởng đến kết quả học tập của nhóm thực nghiệm là rất lớn. Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 4 - Trường THPT Lộc Hưng Năm học 2014 – 2015 Giả thuyết của đề tài “Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác” đã được kiểm chứng và kết quả đạt được rất khả quan góp phần làm nâng cao dần chất lượng bộ môn của trường THPT Lộc Hưng. Biểu đồ so sánh điểm trung bình trước tác động và sau tác động của nhóm thực nghiệm và nhóm đối chứng 4.2. BÀN LUẬN Qua kết quả của bài kiểm tra sau tác động: nhóm thực nghiệm có TBC = 7,0000000 còn nhóm đối chứng có TBC = 5,8611111. Ta tính được độ chênh lệch điểm số giữa hai nhóm là 1.1388889. Điều đó cho thấy điểm TBC của hai lớp đối chứng và thực nghiệm đã có sự khác biệt rõ rệt, lớp được tác động có điểm TBC cao hơn nhiều so với lớp đối chứng.Và chênh lệch giá trị trung bình chuẩn của hai bài kiểm tra là SMD = 0,8164244. Từ đó cho thấy việc tác động này có ảnh hưởng rất lớn đến kết quả học tập. Phép kiểm chứng T – test ĐTB sau tác động của hai lớp là p = 0,0082686 < 0,05. Kết quả này khẳng định sự chênh lệch ĐTB của hai nhóm thực nghiệm và đối chứng không phải là do ngẫu nhiên mà là do tác động có ảnh hưởng rất lớn đến kết quả. Điều này góp phần giúp cho học sinh yêu thích toán hơn, giúp các em thấy được việc giải toán tích phân cũng như tính tích phân hàm số lượng giác không có gì đáng sợ. Hạn chế: Đề tài “Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác” là một trong những giải pháp rất hữu hiệu góp phần nâng cao dần chất lượng bộ môn Toán của trường THPT Lộc Hưng và một số trường THPT vùng sâu khác nhưng để sử dụng có hiệu quả thì đòi hỏi người giáo viên cần có lòng yêu nghề, hết lòng với học sinh uốn nắn kịp thời những sai sót của học sinh. Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 5 - Trường THPT Lộc Hưng Năm học 2014 – 2015 5. KẾT LUẬN VÀ KHUYẾN NGHỊ 5.1. Kết luận: Trên đây là bài viết về “Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác” tiến hành giảng dạy có hiệu quả đối với học sinh lớp 12B1 của trường. Khi áp dụng giải pháp này học sinh có thể giải được các bài tập tính tích phân, biết nhận dạng và áp dụng công thức tính tích phân hàm số lượng giác với độ chính xác cao. 5.2. Khuyến nghị: - Đối với các cấp lãnh đạo: + Về phía Sở Giáo Dục: nên mở rộng các đề tài đã đạt giải để các giáo viên vùng sâu, vùng xa chúng tôi học hỏi kinh nghiệm, áp dụng để dạy tốt hơn. + Về phía nhà trường: hỗ trợ mua các loại sách tham khảo có các chuyên đề về tích phân để các em HS có thể tham khảo, học tập tốt hơn. - Đối với giáo viên: + Tích cực nghiên cứu tài liệu, trao đổi kinh nghiệm dạy học từ đồng nghiệp. + Những bài tập đưa ra cho HS phải từ dễ đến khó, có hệ thống, phân dạng để HS nắm chắc từng dạng bài. + Hướng dẫn học sinh nhận dạng, nhận biết loại hàm, chỉ ra cái sai nếu đặt không đúng và quan trọng hơn là học sinh phải học thuộc bảng nguyên hàm của một số hàm thường gặp, phân biệt khi nào dùng nguyên hàm khi nào dùng đạo hàm. + Kiểm tra thường xuyên, có hiệu quả phần chuẩn bị bài tập về nhà của HS, khuyến khích, chỉ dẫn các em cách học nhóm - Do năng lực và thời gian có hạn, đề tài chưa có nhiều bài tập, bài tập chưa hay, chưa thực sự điển hình nhưng thấy tính hiệu quả, thiết thực của đề tài nên giới thiệu với quý thầy cô và các em học sinh. Rất mong nhận được sự đóng góp của quý thầy cô, của Ban giám hiệu nhà trường để đề tài này được hoàn chỉnh hơn, góp phần nâng cao chất lượng bộ môn, nâng cao hơn nữa kết quả học tập của học sinh qua các kỳ thi. Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 6 - Trường THPT Lộc Hưng Năm học 2014 – 2015 TÀI LIỆU THAM KHẢO 1. Sách giáo khoa giải tích 12 chuẩn và nâng cao – Nhà xuất bản giáo dục. 2. Sách Bài tập giải tích 12 chương trình chuẩn và nâng cao – Nhà xuất bản giáo dục. 3. Sách giáo viên Toán 12 chương trình chuẩn và nâng cao – Nhà xuất bản giáo dục. 4. Đề thi tuyển sinh vào các trường Đại học và Cao đẳng các năm. 5. Mạng Internet: thuvientailieu.bachkim.com. Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 7 - Trường THPT Lộc Hưng Năm học 2014 – 2015 PHỤ LỤC CHUẨN BỊ CỦA GIÁO VIÊN 1. Cơng thức lượng giác thường sử dụng: a. Hệ thức cơ bản: sin 2 a + cos 2 a = 1; tana.cota = 1 + = + = 2 2 2 2 1 1 1 tan ; 1 cot cos sin a a a a b . Công thức nhân đôi: sin2a = 2sina.cosa = − = − = − 2 2 2 2 cos2 cos sin 2cos 1 1 2sina a a a a − = = − 2 2 2tan cot 1 tan2 ; cot2 2cot 1 tan a a a a a a c.Công thức hạ bậc: − = 2 1 cos2 sin 2 a a + = 2 1 cos2 cos 2 a a − = + 2 1 cos2 tan 1 cos2 a a a d.Công thức biến đổi tích thành tổng:   = − + +   1 cos .cos cos( ) cos( ) 2 a b a b a b   = − − +   1 sin .sin cos( ) cos( ) 2 a b a b a b   = − + +   1 sin .cos sin( ) sin( ) 2 a b a b a b 2. Cơng thức ngun hàm: Ngun hàm số sơ cấp Ngun hàm hàm mở rộng cos sinxdx x C= + ∫ ( ) ( ) 1 cos sinax b dx ax b C a + = + + ∫ sin cosxdx x C= − + ∫ ( ) ( ) 1 sin cosax b dx ax b C a + = − + + ∫ 2 1 tan cos dx x C x = + ∫ ( ) ( ) 2 1 1 tan cos dx ax b C ax b a = + + + ∫ 2 1 cot sin dx x C x = − + ∫ ( ) ( ) 2 1 1 cot sin dx ax b C ax b a = − + + + ∫ 3. Định nghĩa tích phân : Cho f(x) là hàm số liên tục trên đoạn [a; b]. Giả sử F(x) là một ngun hàm của f(x) trên đoạn [a; b]. Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b (hay tích phân xác định trên đoạn [a; b]) của hàm số f(x), ký hiệu: ( ) b a f x dx ∫ Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 8 - Trường THPT Lộc Hưng Năm học 2014 – 2015 Ta còn ký hiệu: ( ) ( ) ( ) b a F x F b F a = − . Vậy: ( ) ( ) ( ) ( ) b b a a f x dx F x F b F a = = − ∫ Để giúp học sinh học tốt tích phân hàm số lượng giác tôi phân thành hai dạng chính. Dạng 1: Sử dụng các hệ thức cơ bản, công thức biến đổi như hạ bậc, biến đổi tích thành tổng Dạng 1.1 Sử dụng các hệ thức cơ bản Sử dụng các hệ thức cơ bản biến đổi đưa về những hàm có công thức nguyên hàm. Lần lượt cho các ví dụ có giải thích cách giải, sau đó cho bài tập áp dụng có đáp án, hướng dẫn giải đối với các bài khó để học sinh tự luyện Ví dụ1: Tính 3 4 1 2 6 1 sin sin x I dx x π π − = ∫ Bài giải: Ta thấy đề bài biểu thức dưới dấu tích phân ở dạng thương nên phải biến đổi để không còn dạng thương, mặt khác 2 1 sin x , sinx có công thức nguyên hàm nên ( ) 3 4 4 1 2 2 6 6 4 6 1 sin 1 sin sin sin 2 3 cot cos 1 2 2 x I dx x dx x x x x π π π π π π −   = = −  ÷   = − + = − + + ∫ ∫ Vậy 1 2 3 1 2 2 I = − + + Ví dụ 2: Tính 3 2 2 0 3cos 1 sin x I dx x π = + ∫ Bài giải: Ta thấy biểu thức dưới dấu tích phân ở dạng thương nên phải biến đổi để không còn dạng thương, tử thức là cosx, mẫu là biểu thức theo sinx nên ta biến đổi tử theo sinx để rút gọn ( ) 2 3 2 2 2 0 0 1 sin cos 3cos 3 1 sin 1 sin x x x I dx dx x x π π − = = + + ∫ ∫ Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 9 - Trường THPT Lộc Hưng Năm học 2014 – 2015 ( ) 2 2 0 0 3 3 1 sin cos 3sin cos2 4 x xdx x x π π   = − = +  ÷   ∫ 3 2 = Vậy 2 3 2 I = Ví dụ 3: Tính 3 3 2 2 4 1 sin cos I dx x x π π = ∫ Bài giải: Ta có công thức nguyên hàm 2 2 1 1 , sin cosx x nhưng nếu tách 2 2 2 2 1 1 1 . sin cos sin cosx x x x = được biểu thức dưới dấu tích phân là tích hai hàm nên Cách 1: 2 2 3 3 3 2 2 2 2 4 4 1 sin cos sin cos sin cos x x I dx dx x x x x π π π π + = = ∫ ∫ ( ) 3 3 2 2 4 4 1 1 tan cot cos sin dx x x x x π π π π   = + = −  ÷   ∫ 2 3 3 = Vậy 3 2 3 3 I = Cách 2: 3 3 3 2 2 2 4 4 1 1 sin cos (sin cos ) I dx dx x x x x π π π π = = ∫ ∫ 3 3 2 4 4 4 2cot2 sin 2 dx x x π π π π = = − ∫ 2 3 3 = Vậy 3 2 3 3 I = Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 10 - [...]... lệch chuẩn Lớp thực Lớp đối nghiệm chứng 7 7 7 6 7 5.8611111 1.3949717 1,8693433 Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 33 - Trường THPT Lộc Hưng Năm học 2014 – 2015 PHIẾU ĐÁNH GIÁ ĐỀ TÀI NGHIÊN CỨU KHSPƯD CỦA TỔ CHUYÊN MÔN 1 Tên đề tài: Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác 2 Người... 2015 Người đánh giá thứ nhất Người đánh giá thứ hai PHIẾU ĐÁNH GIÁ ĐỀ TÀI NGHIÊN CỨU KHSPƯD CẤP TRƯỜNG 1 Tên đề tài: Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 36 - ...  Dạng1 .3: Dùng công thức biến đổi tích thành tổng π 3 Ví dụ 1: Tính tích phân: K1 = ∫ sin 2 x cos6 xdx π 6 Bài giải: Biểu thức dưới dấu tích phân là tích của hai hàm nên ta dùng công thức biến đổi tích thành tổng π 3 K1 = ∫ sin 2 x cos6 xdx = π 6 π 3 1 ∫ ( sin8 x − sin 4 x ) dx 2π 6 Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 13 - Trường THPT. .. − 6 ) dx 0 1 1 3 3 b − c −π 6 4 32 Dạng 2: Đổi biến số - các dạng thường gặp khi đổi biến a Chứa biểu thức mang mũ b Chứa mẫu c Chứa căn d Chứa mũ Dạng 2.1 Kết hợp 1 trong 4 dạng a,b,c,d với d(sinx) = cosx; d(cosx) = sinxdx Đáp án: a Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 14 - Trường THPT Lộc Hưng Năm học 2014 – 2015 π 2 ∫ ( 1 + 2sin x... M = 3 = t = 3 ∫ t 3 1 3 1 2 Vậy M3 = 2 3 Bài tập tự luyện: Tính các tích phân: π 2 π 2 sin 2 x dx 1 + cos 2 x 0 a ∫ Đáp án: a.ln 2 b ∫ 0 b sin x cos x 2 4 + 3sin x dx 7 −2 3 Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 20 - Trường THPT Lộc Hưng Dạng 2.3 Năm học 2014 – 2015 Kết dạng a,b,c,d và 1 1 d ( tan x ) = dx = 1 + tan 2 x dx ; d ( cot x )... dx ∫ 2 0 Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 18 - Trường THPT Lộc Hưng Năm học 2014 – 2015 Đặt t = cosx, dt = -sinxdx ⇒ sin xdx = −dt π 3 Đổi cận: khi x = 0 thì t = 1; khi x = thì t = 1 2 1 2 1 2  Do đó: L = − 1 − t 2 dt = −  ln t − t ÷ = ln 2 − 3 9 ∫  t 2÷ 8  1 1 Vậy L9 = ln 2 − ( 2 ) 3 8 Bài tập tự luyện: Tính các tích phân π 6... dx ∫ cos2 x 0 cos 2 x ∫ cos2 x dx 0 b.2 c.1 − π 4 d π −1 2 5 3π e − 4 8 Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 11 - Trường THPT Lộc Hưng Năm học 2014 – 2015 Dạng 1.2: Dùng công thức hạ bậc π 2 Ví dụ 1 Tính J = cos 2 xdx 1 ∫ 0 Bài giải: Ta không có công thức nguyên hàm của cos 2x nên phải dùng công thức hạ bậc π 2 π 2 1 + cos 2 x 0 0 J1... sinx + cosx ⇒ dt = ( cos x − sin x ) dx Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 24 - Trường THPT Lộc Hưng Năm học 2014 – 2015 Đổi cận khi x = 0 thì t = 1; khi x = π thì t= 1 2  t2 −1 1+ ÷ 1  2 ÷ Do đó  dt = 0 P3 − Q3 = ∫  t 1 Giải hệ ta được P3 = π 1 − 4 4 π 1 − 4 4 Bài tập tự luyện: Tính các tích phân: Vậy P3 = π 4 cos 2 x dx sin x +... sin x ∫ 1 + 3cos x dx = 27 0 Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 30 - Trường THPT Lộc Hưng Năm học 2014 – 2015 PHỤ LỤC BẢNG ĐIỂM Bảng kết quả trước khi tác động: Lớp thực nghiệm (01) Stt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Họ tên Trần Hải Bằng Trương Thị Linh Chi Nguyễn... Yến Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác 5 4 6 5 7 6 5 7 4 8 4 7 5 6 5 6 7 5 5 6 7 5 6 5 5 4 6 7 5 10 5 6 6 5 6 7 - 31 - Trường THPT Lộc Hưng Năm học 2014 – 2015 Bảng kết quả sau khi tác động: Lớp thực nghiệm (03) Stt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Họ tên Trần Hải Bằng . học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 3 - Trường THPT Lộc Hưng Năm học 2014 – 2015 - Giáo viên dạy Toán lớp 12B1 là lớp thực nghiệm, giúp học sinh nhận dạng.  ∫ ∫ Vậy L 6 = 2ln2 - 2 Bằng cách phân dạng giúp học sinh lớp 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 17 - Trường THPT Lộc Hưng Năm học 2014 – 2015 Ví dụ 7 : Tính L 7 . 12B1 trường THPT Lộc Hưng học tốt tích phân hàm số lượng giác - 18 - Trường THPT Lộc Hưng Năm học 2014 – 2015 Đặt t = cosx, dt = -sinxdx sin xdx dt⇒ = − Đổi cận: khi x = 0 thì t = 1; khi x = 3 π thì

Ngày đăng: 20/05/2015, 21:26

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w