1. Trang chủ
  2. » Luận Văn - Báo Cáo

SKKN Giúp học sinh lớp 5 vận dụng mối quan hệ của các yếu tố trong tam giác để giải một số bài toán hình học nâng cao

22 2.8K 5

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

GIÚP HỌC SINH LỚP VẬN DỤNG MỐI QUAN HỆ CỦA CÁC YẾU TỐ TRONG TAM GIÁC ĐỂ GIẢI MỘT SỐ BÀI TỐN HÌNH HỌC NÂNG CAO I PHẦN MỞ ĐẦU Lý chọn đề tài Hiện tập trung thực nghiêm túc có hiệu Nghị Hội nghị lần thứ Ban chấp hành Trung ương Đảng Cộng sản Việt Nam khóa XI đổi toàn diện giáo dục đào tạo đáp ứng u cầu cơng nghiệp hóa, đại hóa đất nước điều kiện kinh tế thị trường định hướng xã hội chủ nghĩa hội nhập quốc tế Đổi bản, toàn diện giáo dục nhằm mục tiêu giáo dục người Việt Nam phát triển toàn diện phát huy tốt tiềm năng, khả sáng tạo cá nhân Để đạt mục tiêu người giáo viên đóng vai trị quan trọng Trong dạy học đòi hỏi người giáo viên cần quan tâm đến tất đối tượng học sinh, phải có biện pháp hình thức dạy học tích cực, tất học sinh lớp phải chủ động nắm kiến thức học vận dụng kiến thức vào thực hành làm tập lớp Đặc biệt em vận dụng kiến thức có vào sống hàng ngày cách linh hoạt Đặc biệt mơn tốn mơn học giúp em phát triển nhiều kỹ như: kỹ tư sáng tạo, kỹ phân tích, tổng hợp, hệ thống hóa, khái quát hóa v v Khi có kỹ em say mê, tìm tịi, hứng thú học tốn Trong thực tế dạy học mơn tốn, tơi thấy em việc nắm vững kiến thức để vận dụng làm tập sách giáo khoa việc làm không khó song tốn địi hỏi tư cao chút khơng phải em làm Còn em giỏi, làm kiểm tra sợ tốn có nội dung hình học Các em thường gặp khó khăn giải khơng biết kẻ thêm đường phụ, mối quan hệ yếu tố hình sao, có liên quan đến giải nào? Dẫn đến kết kiểm tra hạn chế Chính lẽ mà thân lựa chọn đề tài: “Giúp học sinh lớp vận dụng linh hoạt mối quan hệ yếu tố tam giác để giải số tốn hình học nâng cao” Đối tượng nghiên cứu: Mối quan hệ yếu tố hình tam giác để giải số tốn Phạm vi nghiên cứu - Chương trình nội dung mơn tốn lớp 5: Các tốn liên quan đến yếu tố hình tam giác - Về thời gian: Từ năm học 2011 - 2012 áp dụng vào dạy học năm học 2013 - 2014 Mục tiêu, nhiệm vụ nghiên cứu: a Mục tiêu: - Giúp học sinh lớp nhận biết số mối quan hệ yếu tố hình tam giác - Học sinh biết cách vận dụng linh hoạt số kiến thức học hình tam giác để giải số tốn nâng cao hình học - Rèn luyện kỹ năng: kỹ tư sáng tạo, kỹ phân tích, tổng hợp, hệ thống hóa, khái qt hóa học tốn b Nhiệm vụ: - Nghiên cứu tốn có nội dung mối quan hệ yếu tố tam giác để giúp học sinh giải số tốn hình học nâng cao - Tìm giải pháp nhằm nâng cao chất lượng dạy học môn Toán - Rút học kinh nghiệm cho thân vận dụng kinh nghiệm vào thực tiễn dạy học Giả thiết khoa học đề tài Nếu đề tài áp dụng thực tiễn dạy học giúp học sinh giỏi biết thêm số kiến thức mối quan hệ yếu tố hình tam giác em vận dụng kiến thức dể giải tốn nâng cao hình học cách dễ dàng hiệu Phương pháp nghiên cứu - Phương pháp điều tra - Phương pháp phân tích, tổng hợp, xử lý tình giảng dạy - Phương pháp quan sát - Phương pháp trao đổi - Phương pháp thực nghiệm - Phương pháp tổng kết kinh nghiệm Dự báo đóng góp đề tài Nếu kinh nghiệm áp dụng cách rộng rãi chắn góp phần khơng nhỏ vào việc giúp học sinh không giải tốn liên quan đến yếu tố hình tam giác cịn có kỹ giải tất tốn liên quan đến hình tứ giác, hình thang, hình chữ nhật, hình vng tạo cho em có say mê hứng thú học tập mơn Tốn II GIẢI QUYẾT VẤN ĐỀ Cơ sở khoa học a Cơ sở lí luận Như biết, từ lớp Một, em làm quen với hình tam giác hình vng, hình trịn dạng tổng thể Nhưng lên đến lớp 5, em học khái niệm yếu tố hình tam giác đỉnh, góc, đáy, chiều cao, học cách tính diện tích tam giác củng cố cách tính diện tích thơng qua nội dung ơn tập hình học cuối cấp Từ cơng thức tính diện tich hình tam giác sách giáo khoa Trong đó: S diện tích hình tam giác, h chiều cao, a độ dài cạnh đáy (a h phải đơn vị đo) Ta suy cách tính cạnh đáy hay tính chiều cao sau: Thế vận dụng vào làm số tập em không khỏi lúng túng trường hợp đường cao nằm ngồi tam giác số tốn khơng tường minh có liên quan đến tỷ số hai đáy, tỷ số chiều cao tỷ số diện tích b Cơ sở thực tiễn Trong thực tế giảng dạy mơn tốn lớp 5, tốn có liên quan đến hình học kể việc bồi dưỡng học sinh giỏi Tôi nhận thấy học sinh sợ tốn liên quan đến hình học Có thể em chưa trang bị đầy đủ kiến thức hình học, em chưa quen với tốn khơng tường minh Có tốn u cầu phải vẽ đường phụ giải em không quen Đặc biệt tốn chứng minh hình, tìm tỷ số diện tích, tỷ số cạnh, đường cao hay tính số đo cạnh v.v Đối với tốn hình học đa dạng phong phú, kể hết phương pháp giải Qua thực tế giảng dạy, tơi thấy có nhiều tốn hình học có sử dụng đến kiến thức liên quan đến diện tích hình tam giác Mặc dầu khơng có phương pháp giải tổng qt thân tơi có số kinh nghiệm khiêm tốn giúp học sinh vận dung linh hoạt số kiến thức diện tích hình tam giác để giải số toán nâng cao hình học Kết điều tra, khảo sát Tôi điều tra, khảo sát lớp phụ trách dạy bồi dưỡng học sinh giỏi, lớp đối chứng (khảo sát năm học 2011- 2012) lớp thực nghiệm (Khảo sát năm học 2012- 2013) Sau học sinh học xong phần diện tích hình tam giác, tơi cho em (học sinh khá, giỏi) vận dụng làm số tập sau: Bài 1: Cho tam giác ABC có diện tích 72cm 2, chiều cao cm Tính cạnh đáy BC Bài 2: Cho hình thang vng ABCD có AB = cm, DC = 18cm, AD = 13cm Nối D với B hai tam giác ABD BDC a) Tính diện tích tam giác đó? b) Tính tỉ số phần trăm diện tích hình tam giác ABD diện tích hình tam giác BDC Bài 3: : Cho hình tam giác ABC có diện tích 24cm Nếu kéo dài đáy BC thêm đoạn dài 2cm diện tích tăng thêm bao nhiêu? Biết đáy hình tam giác ban đầu 8cm Bài 4: Cho tam giác ABC, AB lấy M AC lấy điểm N cho NA = 1 AC, MA = AB Tính MN biết BC = 36cm; MNCB hình thang 3 Sau 40 phút làm bài, kết thu từ học sinh qua năm học sau: Năm học Số Giỏi học 2011- 2012 sinh 25 2013 - 2014 25 Khá Trung bình Yếu SL TL SL TL SL TL SL TL 4% 8% 28% 24% 15 14 60% 56% 8% 12% * Qua chấm khảo sát, kết cho thấy: - Ở 2, lớp em vận dụng công thức để tính kết Tuy nhiên 2, em làm theo cách áp dụng cơng thức để thay số tính, không em biết cách dùng tỉ số hai đáy để tính như: Diện tích tam giác ABD là: 18 x 13 : = 117 ( cm2) Diện tích tam giác ABD BDC có chiều cao (bằng chiều cao hình thang) Tỷ số hai đáy AB DC là: : 18 = Vậy tỷ số diện tích hai tam giác ABD BDC Diện tích tam giác BDC 117 x = 234 (cm2) Tỉ số phần trăm diện tích hình tam giác ABD diện tích tam giác BDC là: : = 0,5 0,5 = 50% - Ở tập 4, phần lớn em tìm đáp số nhiều em lý luận chưa chặt chẽ Cũng em chưa biết tìm diện tích phần mở rộng cách dựa vào tỉ số độ dài hai đáy Ta thấy thực tiễn dạy tốn, khơng phải tốn dạng tường minh tập 1, cần dựa vào cơng thức tính kết Đặc biệt trình dạy bồi dưỡng học sinh có khiếu mơn Tốn, để đáp ứng nhu cầu học tập học sinh, giáo viên phải sưu tầm, thiết kế toán nâng cao hơn, khái quát thường toán “ngụy trang” điều kiện chưa tường minh Bởi khơng tránh khỏi vướng mắc, khó khăn giáo viên khơng có phương pháp giúp học sinh nắm vững mối quan hệ yếu tố tam giác Trong trình nghiên cứu qua thực tế giảng dạy bồi dưỡng học sinh giỏi, tơi thấy học sinh thường gặp khó khăn giải tốn dạng Tính diện tích tam giác chưa biết độ dài cạnh đáy chiều cao Để tính diện tích hình phải dựa vào diện tích tỉ lệ độ dài đáy chiều cao tam giác khác Với kinh nghiệm khiêm tốn, thân đưa số tập giúp học sinh giỏi vận dụng linh hoạt số kiến thức học để giải toán dựa vào mối quan hệ yếu tố trong tam giác Một số giải pháp giúp học sinh vận dụng linh hoạt mối quan hệ yếu tố hình tam giác để giải số tốn nâng cao hình học Như biết, muốn nâng cao dạng phải củng cố kiến thức thật Học sinh phải nắm phương pháp giải, quy trình giải, cơng thức tính Để học sinh nắm sâu ta phải dùng hệ thống câu hỏi để kiểm tra xem thử em nắm chưa làm theo công thức làm theo mẫu chưa hiểu rõ vấn đề cốt lõi Sau học sinh nắm kiến thức giáo viên dựa kiến thức để mở rộng nâng cao theo mạch kiến thức để từ kiến thức phát triển lên kiến thức Khi rút số kết luận giáo viên phải tổng quát hóa tốn để học sinh dễ nhớ hiểu Từ toán bản, giáo viên thiết kế, sáng tác thêm tốn có nội dung phong phú hơn, mở rộng nâng cao dần để em giải Đối với em thật giỏi, giáo viên khuyến khích học sinh tự đề giải Có phát huy hết lực tiềm ẩn học sinh, khơi dậy tò mị ham thích học tập em Trở lại với dạng tốn diện tích hình tam giác Để giúp em vẽ được, tính diện tích tam giác trường hợp trên, giúp học sinh hiểu sâu vận dụng làm tốt tốn trường hợp tương tự tơi sử dụng số biện pháp sau: - Thông qua số hình vẽ hướng dẫn em xác định yếu tố tam giác (cụ thể đáy chiều cao tương ứng với đáy) - Từ ví dụ cụ thể giúp học sinh tìm mối quan hệ yếu tố tam giác (đáy, chiều cao tương ứng với đáy diện tích) Đối với học sinh có khiếu, ví dụ cụ thể giáo viên giúp học sinh nắm kiến thưc nâng cao sau: Trong hình tam giác: - Nếu hai hình tam giác có đáy diện tích chúng tỉ lệ thuận với chiều cao tương ứng - Nếu hai hình tam giác có chiều cao diện tích tỉ lệ thuận với đáy tương ứng - Nếu diện tích tam giác khơng thay đổi đáy chúng tỉ lệ nghịch với chiều cao tương ứng - Vận dụng hiểu biết mối quan hệ để giải số tốn liên quan Dạng 1: Hai tam giác có chung chiều cao chiều cao Bài toán 1: Tam giác ABC có đáy BC 30cm chiều cao tương ứng với đáy 12cm Kéo dài đáy BC thêm đoạn CD 5cm diện tích tăng thêm bao nhiêu? Bài toán học sinh dễ dàng giải Cách 1: Diện tích tam giác ABC : (30 x 12) :2 = 180 (cm2) Khi mở rộng đáy thêm 5cm phần mở rộng có dạng hình tam giác chiều cao phần mở rộng chiều cao tam giác ban đầu ( AH) Độ dài đoạn BD là: 30 + = 35 (cm) Diện tích tam giác ABD là: 35 x 12 : = 210 (cm2) Diện tích tăng thêm là: 140 – 120 = 30 (cm2) Đáp số : 30cm2 Cách 2: Chiều cao phần mở rộng chiều cao tam giác ban đầu (AH) Diện tích phần mở rộng là: x 12 : = 30 (cm2) Đáp số: 30 cm2 Việc quan trọng học sinh xác định hai tam giác ABC ACD có chung chiều cao (chiều cao AH) Từ toán trên, GV giúp học sinh hiểu được: Em so sánh tỷ lệ đáy phần mở rộng đáy phần tam giác ban đầu ? : (5: 30 = ) Tỷ lệ diện tích phần mở rộng so với diện tích hình tam giác ban đầu nào? (30 : 180 = ) Vậy hai tam giác có chiều cao (chiều cao nhau) độ dài đáy diện tích có quan hệ nào? (cùng tăng giảm) Rút kết luận 1: Hai tam giác A B có chiều cao (chung chiều cao) thì: Từ tốn ta khai thác thêm số toán khác mà thực chất toán song hình thức biểu lại khác Ta có tốn 2: Một ruộng hình tam giác có diện tích 160m Người ta mở rộng đáy thêm đoạn đáy ban đầu diện tích tăng thêm bao nhiêu? Biết sau mở rộng ruộng hình tam giác Hướng dẫn học sinh phân tích tốn: - Tỉ số đáy tam giác phần mở rộng đáy ban đầu bao nhiêu? ( ) - Tỉ số diện tích phần mở rộng diện tích tam giác ban đầu bao nhiêu? ( ) Dựa vào quan hệ tỉ lệ đáy diện tích tam giác nên em dễ dàng giải Giải: Phần mở rộng hình tam giác có chiều cao chiều cao tam giác ban đầu Theo đáy phần mở rộng nên diện tích phần mở rộng đáy ruộng ban đầu diện tích ruộng ban đầu Diện tích phần mở rộng là: 160 x =40 (m2) Đáp số: 40m2 Vậy: Nếu biết đáy ruộng ban đầu tỉ số diện tích phần mở rộng với diện tích tam giác ban đầu ta có tính đáy phần mở rộng khơng? Ta có tốn 3: Một ruộng hình tam giác có đáy dài 20m Người ta mở rộng đáy thêm đoạn để có diện tích phần mở rộng 25% diện tích ban đầu Tính độ dài đáy phần mở rộng, biết sau mở rộng ruộng hình tam giác Phân tích tốn: - Tỉ số diện tích phần mở rộng diện tích ruộng ban đầu bao nhiêu? (25%) - Tỉ số diện tích phần mở rộng diện tích tam giác ban đầu bao nhiêu? ( ) - Tỉ số diện tích phần mở rộng diện tích tam giác ban đầu bao nhiêu? ( ) Dựa vào quan hệ tỉ lệ đáy diện tích, em dễ dàng giải được.Từ toán 3, hướng dẫn học sinh phân tích: * Nếu biết độ dài đáy phần mở rộng biết tỉ số diện tích tam giác phần mở rộng diện tích tam giác ban đầu ta tính độ dài đáy ban đầu khơng? Ta có tốn 4: Nhà bác Nam có ruộng hình tam giác Nay làm đường nên bị xén vào ruộng phần đất hình tam giác (hình vẽ) có đỉnh đỉnh đất, diện tích bị xén vào diện tích ban đầu Tính độ dài đáy mảnh đất lại, biết mảnh đất bị xén có đáy 5m Từ hiểu biết mối quan hệ độ dài đáy diện tích, em giải được.Phần bị xén phần đất cịn lại có dạng hình tam giác Ta xem đáy tam giác 5m chiều cao chiều cao phần đất lại (bằng chiều cao hạ từ đỉnh A xuống BC) Theo phần đất bị xén 1 diện tích ban đầu hay diện tích đất cịn lại Do đáy phần đất bị xén đáy phần đất lại Độ dài đáy phần đất lại là: : = 20 (m) Đáp số: 20m * Từ toán rút tổng qt 1: - Gọi diện tích hình S1; độ dài đáy hình a1 - Gọi diện tích hình S2; độ dài đáy hình a2 Khi tam giác tam giác có chung chiều cao (chiều cao nhau) thì: Ta có: a1 S1 = a S2 ⇒ S1 = S2 x a1 a2 10 S2 = S1x a2 a1 ⇒ a1 = a x S1 S2 a = a 1x S2 S1 Đối với dạng này, hai tam giác có chiều cao (chung chiều cao) diện tích độ dài đáy có quan hệ tỉ lệ tăng giảm Dạng 2: Hai tam giác có đáy chung đáy Bài tốn 1: Cho tứ giác MNPQ vng P Q, có MQ = 6cm, NP = 9cm, PQ = 8cm (xem hình vẽ) Nối M với p, N với Q Hãy so sánh diện tích tam giác MQP NQP Vận dụng cơng thức tính diện tích tam giác, học sinh chăn dẽ dàng giải được: Giải: Diện tích tam giác MQP là: x : = 24 (cm2) Diện tích tam giác NQP : x : = 36 (cm2) Vì 36cm2 > 24cm2 nên diện tích tam giác NQP lớn diện tích tam giác MQP Từ tốn trên, hướng dẫn học sinh phân tích: - Nếu xem PQ đáy tam giác MPQ chiều cao tương ứng cạnh nào? (MQ) - Nếu xem QP đáy tam giác NPQ chiều cao tương ứng cạnh nào? (NP) - Chiều cao NP tam giác NPQ gấp lần chiều cao MQ tam giác MQP? (9:6 = lần) - Diện tích tam giác NPQ gấp lần diện tích tam giác MQP? (36:24 = lần) - Vậy hai tam giác có chung đáy (đáy nhau) diện tích chiều cao có quan hệ nào? (quan hệ tăng giảm) Rút kết luận 2: Hai tam giác A B có chung đáy (đáy nhau) thì: 11 Phân tích tốn: Nếu ta biết tỉ lệ chiều cao hai tam giác biết diện tích hai tam giác ta tính diện tích tam giác cịn lại hay khơng? Ta có tốn 2: Cho hình tam giác ABC có diện tích 9cm 2, chiều cao AH 3cm Trên AH lấy điểm I cho IH = AH Tính diện tích tam giác BIC Phân tích tốn : - Tỉ số chiều cao IH so với chiều cao AH bao nhiêu? ( ) - Khi đáy BC hai tam giác khơng đổi tỷ số diện tích tam giác BIC so với diện tích tam giác ABC bao nhiêu? ( ) Từ tính diện tích tam giác BIC khơng? Giải: Khi đáy hai tam giác không đổi Nếu chiều cao tam giác BIC diện tích tam giác BIC chiều cao tam giác ABC diện tích tam giác ABC Diện tích tam giác BIC : x = 7,5 (cm2) * Tương tự ta thiết kế số tốn, từ rút cơng thức tổng qt 2: - Gọi diện tích hình tam giác S1, chiều cao tam giác h1 - Gọi diện tích hình tam giác S2, chiều cao tam giác h2 Nếu tam giác tam giác có chung đáy (hoặc đáy nhau) thì: * Như qua kết luận kết luận 2: 12 + Hai tam giác có chung chiều cao (chiều cao nhau) diện tích độ dài đáy quan hệ tỉ lệ tăng giảm + Hai tam giác có đáy (chung đáy) diện tích chiều cao tương ứng với đáy có quan hệ tỉ lệ tăng giảm Dạng 3: Hai tam giác có diện tích độ dài đáy chiều cao tương ứng: Bài toán 1: Cho hình chữ nhật ABCD vó chiều dài AB = 12cm, chiều rộng BC = 7cm Trên cạnh AB lấy điểm E cho EB = cho CM = AB; cạnh BC lấy điểm M MB Nối E với M, M với D So sánh diện tích tam giác EBM MCD Phân tích tốn: Muốn so sánh diện tích hai tam giác EBM MCD ta phải làm gì? (phải biết diện tích hình tam giác) Hai tam giác có đặc điểm gì? (đều tam giác vng) Muốn tính diện tích tam giác EBM ta phải biết gì? (độ dài đoạn EB BM) Muốn tính diện tích tam giác MCD ta phải biết gì? (độ dài đoạn MC DC) Giải: Độ dài đoạn EB là: 12 x = (cm) Độ dài đoạn BM là: 7:(3+4)x4 = 4(cm) Độ dài đoạn MC là: – = (cm) Diện tích tam giác BME là: x : = 18 (cm2) Diện tích tam giác MCD là: x 12 : = 18 (cm2) Vì 18cm2 = 18cm2 nên diện tích tam giác BME diện tích tam giác MCD * Chốt lại kiến thức để học sinh rút kết luận: - Nếu coi EB đáy tam giác EBM chiêu cao tương ứng cạnh ? (BM) 13 - Nếu coi DC đáy tam giác DMC chiêu cao tương ứng cạnh (MC) - Tỉ số chiều cao BM MC bao nhiêu? ( ) - Tỉ số đáy EB DC ? ( ) - Vậy hai tam giác có diện tích độ dài đáy chiều cao tương ứng với đáy có quan hệ nào? (chiều cao tăng lần độ dài đáy giảm nhiêu lần ngược lại chiều cao giảm lần đáy tăng nhiêu lần) Qua tốn rút kết luận 3: Thì diện tích tam giác A diện tích tam giác B Từ toán giáo viên thiết kế thêm số khác, từ rút cơng thức tổng quát 3: - Gọi đáy tam giác a1; chiều cao tương ứng đáy h1 - Gọi đáy tam giác a2; chiều cao tương ứng đáy h2 Nếu a1 h = S1 = S2 a h1 ⇒ a1 = a x h2 ; h1 h1 = h x a2 ; a1 a = a1x h1 ; h2 h = h1x a1 a2 Sau học sinh nắm vững mối quan hệ yếu tố tam giác giáo viên số tập theo dạng để nâng cao dần kiến thức cho học sinh, hệ thống tập từ dễ đến khó, từ đơn giản đến phức tạp Sau số ví dụ: Bài 1: Cho tam giác ABC Trên BC lấy M cho BM = BC ; nối A với M AM lấy N cho NM = AM Nối B với N Tính diện tích hình tam giác ABC biết diện tích hình tam giác BMN 6cm2 - Để giải tốn u cầu em vẽ hình 14 Từ hình vẽ giáo viên hướng dẫn em khai thác dần - Để tính diện tích tam giác ABC ta phải dựa vào đâu? (dựa vào quan hệ tỉ lệ diện tích tam giác AMB ABC) - Hai tam giác có quan hệ nào? (chung chiều cao hạ từ đỉnh A, đáy BM = BC nên SABM = SABC ) - Diện tích tam giác ABM biết chưa? (Chưa) - Dựa vào đâu để tính diện tích tam giác ABM? (quan hệ tam giác BMN ABM) - Tam giác BMN ABM có quan hệ nào? (có chung chiều cao hạ từ đỉnh B, đáy MN = 1 AM nên SBMN = SABM ) 3 Từ hướng suy nghĩ học sinh giải được: Giải: Tam giác BMN ABM có chung chiều cao hạ từ đỉnh B đáy MN= 1 AM nên diện tích tam giác BMN = diện tích tam giác ABM 3 Diện tích tam giác ABM là: x = 18 (cm2) Tam giác ABM ABC có đáy BM = đỉnh A nên diện tích tam giác ABM = BC , có chung chiều cao hạ từ diện tích tam giác ABC Diện tích tam giác ABC : 18 x = 72 (cm2) Đáp số: 72 cm2 * Ở tốn có em phát cách giải khác Nối N với C, sau dựa vào quan hệ tỉ lệ tam giác tính Cách 2: Nối N với C 15 SBMN = 1 SMNC có đáy BM = MC (do BM = BC , có chung chiều cao 3 hạ từ đỉnh N) Diện tích tam giác MNC là: x = 18 (cm2) SMNC = 1 SAMC (đáy MN = AM, chung chiều 3 cao hạ từ đỉnh C) Diện tích tam giác AMC là: 18 x = 54 1 SMNC có đáy BM = MC (do BM 3 (cm2)SBMN = = BC), có chung chiều cao hạ từ đỉnh N Diện tích tam giác MNC là: x = 18 (cm2) SMNC = 1 SAMC (đáy MN = AM; chung chiều cao hạ từ đỉnh C) 3 Diện tích tam giác AMC : 18 x = 54 (cm2) SBMN = 1 SABM (đáy MN = AM, chung chiều cao hạ từ đỉnh B) 3 Diện tích tam giác ABM là: x = 18 (cm2) Diện tích tam giác ABC : 54 + 18 = 72 (cm2) Đáp số: 72cm2 Bài 2: Cho tam giác ABC có diện tích 780cm Trên cạnh AB lấy điểm E cho EB = 1 AB Trên cạnh AC lấy điển D cho AD = AC Nối BD CE 4 cắt I.Tính diện tích tam giác BEI 16 Phân tích: Tam giác BEI có cạnh BI chung với cạnh tam giác nào? (BIC) Dựa vào mối quan hệ yếu tố tam giác học sinh giải được: - Từ kết ta có: Diện tích tam giác BDC gấp diện tích tam giác EBD số lần là: 58: 48,75 = 12 (lần) Tam giác BDC EBD có chung đáy BD mà diện tích tam giác BDC gấp 12 lần diện tích tam giác EBD nên chiều cao CH gấp 12 lần EK - Xét tam giác EBI BIC có chung đáy BI chiều cao CH gấp 12 lần EK nên diện tích tam giác BIC gấp 12 lần diện tích EBI hay SEBI = 1 SBIC = SBEC 12 13 Mà SBEC = 1 SABC (vì EB = AB; chung chiều cao hạ từ đỉnh C) 4 Diện tích tam giác BEC là: 780 x Diện tích tam giác EBI là: 195 x = 195 (cm2) =15 (cm2) 13 Đáp số: 15cm2 Bài 3: Cho tứ giác ABCD có AC BD cắt E Biết diện tích tam giác EAB, ECD, ECB 15cm2, 10cm2 5cm2 Tính diện tích hình tam giác EAD Hướng dẫn học sinh phân tích: - Muốn tính diện tích tam giác AED ta dựa vào đâu? (ta xem tam giác có chung cạnh với tam giác nào? sau ta xem cạnh đáy, xét tỉ số chiều cao hai tam giác đó) 17 - Dựa vào đâu để tính tỉ số chiều cao? (dựa vào diện tích tam giác có chung chiều cao với chiều cao đó) - Em cho biết tam giác ADE có chung cạnh với tam giác nào? (chung cạnh AE với tam giác AEB; chung cạnh DE vứi tam giác DEC) Từ hướng suy nghĩ em giải Cách 1: Tam giác BEC DEC có chung đáy EC tỉ số diện tích tam giác BEC DEC là: : 10 = 1 Do chiều cao BH = DK 2 Tam giác AED AEB có chung đáy AE chiều cao BH = DK Nên diện tích tam giác ABE = diện tích tam giác AED Diện tích tam giác AED là: 15 x = 30 (cm2) Đáp số: 30cm2 Cách 2: Tam giác EDA EDC có chung cạnh DE, AK chiều cao tam giác ADE chiều cao tam giác ABE, CH chiều cao tam giác EBC chiều cao tam giác ECD Tam giác EBC ABE có chung đáy EB nên tỉ số diện tích tỉ số chiều cao Tỉ số diện tích tam giác EBC ABE là: : 15 = 18 Do chiều cao CH = chiều cao CH = AKTam giác ECD EAD có chung đáy ED 1 AK nên diện tích tam giác ECD = diện tích tam giác EAD 3 Diện tích tam giác AED là: 10 x = 30 (cm2) Đáp số: 30cm2 * Đối với tốn u cầu tính diện tích tam giác (ta chưa biết cụ thể số đo độ dài đáy chiều cao tương ứng với nó) phải xét mối quan hệ tam giác với số tam giác khác (theo tỉ lệ độ dài đáy chiều cao) Ngồi ra, ta cịn vận dụng mối quan hệ yếu tố tam giác để giải toán mở rộng hay thu hẹp diện tích tam giác, tứ giác Kết đạt Cuối năm học 2011- 2012, khảo sát lại lớp đối chứng để làm sở nghiên cứu đề tài Và cuối năm học 2012 - 2013, sau áp dụng đề tài cho lớp thực nghiệm, cho em làm kiểm tra với số tập sau: Bài 1: Một hình tam giác có diện tích 120cm² Nếu kéo dài đáy thêm 3cm diện tích tăng thêm 30cm² Tính cạnh đáy hình tam giác Bài 2: Cho tam giác ABC Gọi M,N trung điểm canh BC CA, đoạn AM BN cất G Nối CG kéo dài cắt AB P Chứng minh: a/ AP = PB b/ Sáu tam giác AGP; PGB; BGM; MGC; CGN MGA có diện tích Bài 2: Cho diện tích tam giác ABC có diện tích 780cm Trên cạnh 1 AB lấy điểm E cho BE= AB Trên cạnh AC lấy điểm D cho AD = 4 AC Nối BD CE cắt I Tính diện tích tam giác CBD EBD 19 Bài 3: Cho tam giác ABC Trên cạnh đáy BC lấy điểm D cho 1 BD = DC Nối A với D Trên cạnh AD lấy điểm M cho DM = AD Tính diện tích tam giác ABC biết diện tích tam giác BMD = 4cm2 Sau 40 phút làm bài, kết thu từ học sinh qua năm học sau: Năm học Số học sinh Giỏi SL 2011 - 2012 2013 - 2014 Lớp đối chứng Lớp thực nghiệm TL Trung bình Yếu 12 48% SL TL SL TL SL TL 25 25 Khá 24% 17 68% 8% 11 44% 8% 0% Qua chấm khảo sát, kết cho thấy: Ở lớp đối chứng, khảo sát cuối năm học 2011- 2012, có em đạt điểm khá, em tính kết lập luận không chặt chẽ, chưa biết kẻ thêm đường phụ để tìm mối quan hệ yếu tố hình tam giác để giải tốn Những em đạt mức trung bình mức yếu làm tương đối hoàn chỉnh Các em biết tính chiều cao tam giác phần diện tích tăng thêm diện tích hình tam giác ban đầu từ em tính đáy đáy giác ban đầu Bài 2, 3, em chua biết kẻ thêm đường phụ để tìm mối quan hệ yếu tố hình tam giác để giải Còn lớp thực nghiệm, đa số em biết cách vẽ đường phụ, biết vận dụng mối quan hệ yếu tố hình tam giác để giải toán cách chặt chẽ, hợp lý Sau nhiều năm bồi dưỡng học sinh khiếu toán, áp dụng số kinh nghiệm trên, nhận thấy chất lượng học sinh nâng cao rõ rệt Gặp toán tương đối phức tạp, em biết áp dụng kết luận mối quan hệ yếu tố tam giác để giải Bài làm em lý luận chặt chẽ, xác Từ tốn cụ thể, em có hướng suy nghĩ khác Từ hướng suy nghĩ em tìm nhiều cách giải cho 20 toán Đặc biệt, tiết học có tốn liên quan đến diện tích tam giác em học hào hứng Đó động lực thúc đẩy tơi q trình dạy học Như vậy, sau nhiều năm bồi dưỡng học sinh khiếu tốn, áp dụng số kinh nghiệm trên, tơi nhận thấy chất lượng học sinh nâng cao rõ rệt Gặp toán tương đối phức tạp, em biết áp dụng kết luận mối quan hệ yếu tố tam giác để giải Bài làm em lý luận chặt chẽ, xác Từ tốn cụ thể, em có hướng suy nghĩ khác Từ hướng suy nghĩ em tìm nhiều cách giải cho toán Đặc biệt, tiết học có tốn liên quan đến diện tích tam giác em học hào hứng Đó động lực thúc đẩy tơi q trình dạy học III KẾT LUẬN Qua toán cụ thể nêu trên, thân hướng dẫn học sinh nắn kiến thức mối quan hệ yếu tố hình tam giác Các em vận dụng linh hoạt kiến thức đố để giải nhiều toán nâng cao hình học có liên quan dến diện tích hình tam giác Đây dạng tốn phổ biến khó học sinh lớp Khó kể hết tốn vận dụng mối quan hệ yếu tố hình học để giải khó đưa phương pháp giải tổng quát cho dạng toán Song qua tốn trên, tơi đưa số kinh nghiệm nhỏ giúp học sinh giải dạng toán sau: Giúp học sinh nắm kiến thức hình tam giác cách vững Cách phổ biến tìm mối quan hệ yếu tố hình tam giác có liên quan (Hai tam giác có chung đáy, chung chiều cao hay chung diện tích ) để đặt tỷ số tương ứng; tỷ số đáy, tỷ số chiều cao hay tỷ số diện tích.v.v ) Đối với tốn u cầu tính diện tích tam giác (ta chưa biết cụ thể số đo độ dài đáy chiều cao tương ứng với nó) phải xét mối 21 quan hệ tam giác với số tam giác khác (theo tỉ lệ độ dài đáy chiều cao) Tránh lối dạy áp đặt chiều, phải từ ví dụ cụ thể, giáo viên dùng hệ thống câu hỏi bổ sung (ít hay nhiều tùy thuộc trình độ nhận thức học sinh) để hướng dẫn em rút kết luận Từ kết luận giáo viên phải biết tổng qt hóa tốn để giúp học sinh dễ nhớ Phải ý khai thác phát triển đề toán khác sở tốn có, tạo hội phát triển tư em Khi thiết kế toán nên liên hệ gần gũi với sống, phải thường xuyên đổi nội dung cho phù hợp với vấn đề thời đại Phải kiên trì khơng nóng vội, học sinh chưa hiểu nắm chưa vững kiến thức giáo viên cần phải có hệ thống câu hỏi gợi mở nhằm giúp em nắm trắc kiến thức, tránh làm thay cho học sinh Đặc biệt giáo viên nên khuyến khích học sinh nên tự đề tự giải, có em nhớ lâu, khắc sâu kiến thức Với cách làm thấy chất lượng học tập học sinh ngày nâng lên, hạn chế tình trạng học sinh tiếp thu kiến thức cách thụ động Số lượng học sinh u thích mơn học ngày tăng Với ý tưởng nâng cao chất lượng học sinh giỏi, đồng thời mở rộng cách nhìn tốn diện tích hình tam giác; kinh nghiệm ỏi mình, tơi cố gắng trình bày số tốn điển hình phương pháp giải chúng Hy vọng nhận đồng nghiệp người quan tâm ý kiến bổ ích để vấn đề nêu ngày thiết thực VI KIẾN NGHỊ ĐỀ XUẤT Hàng năm có nhiều sáng kiến kinh nghiệm đạt bậc 3, bậc cấp tỉnh, phòng nên tổ chức chuyên đề phổ biến kinh nghiệm đạt bậc cao cho đơn vị để đơn vị học tập áp dụng vào dạy học Nên tổ chức nhiều chuyên đề bồi dưỡng kiến thức dạng tốn tính vận tốc dạng tốn có liên quan đến hình học cho giáo viên dạng tốn 22 thường tốn khó nên nhiều giáo viên khơng dạy lớp 4, khơng thể tìm cách giải, chưa nói đến bồi dưỡng học sinh giỏi * Với lực cịn hạn chế nên khơng thể tránh khỏi sai sót khiếm khuyết Vậy tơi thành tâm mong bạn đọc góp ý xây dựng để phần giúp học sinh có phương pháp giải tốn tốt Ngày 28 tháng năm 2014 23 ... để giải toán dựa vào mối quan hệ yếu tố trong tam giác Một số giải pháp giúp học sinh vận dụng linh hoạt mối quan hệ yếu tố hình tam giác để giải số toán nâng cao hình học Như biết, muốn nâng cao. .. chọn đề tài: ? ?Giúp học sinh lớp vận dụng linh hoạt mối quan hệ yếu tố tam giác để giải số tốn hình học nâng cao? ?? Đối tượng nghiên cứu: Mối quan hệ yếu tố hình tam giác để giải số toán Phạm vi... tiêu: - Giúp học sinh lớp nhận biết số mối quan hệ yếu tố hình tam giác - Học sinh biết cách vận dụng linh hoạt số kiến thức học hình tam giác để giải số tốn nâng cao hình học - Rèn luyện kỹ năng:

Ngày đăng: 25/12/2014, 09:31

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w