1. Trang chủ
  2. » Giáo Dục - Đào Tạo

tuyển tập bất đẳng thức có giải

43 2,1K 14

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 43
Dung lượng 2,17 MB

Nội dung

Tuyển tập Bất đẳng thức PHẦN I: LUYỆN TẬP CĂN BẢN I. Chứng minh BĐT dựa vào định nghĩa và tính chất cơ bản: 1. Cho a, b > 0 chứng minh: + +   ≥  ÷   3 3 3 a b a b 2 2 2. Chứng minh: + + ≤ 2 2 a b a b 2 2 3. Cho a + b ≥ 0 chứng minh: + + ≥ 3 3 3 a b a b 2 2 4. Cho a, b > 0 . Chứng minh: + ≥ + a b a b b a 5. Chứng minh: Với a ≥ b ≥ 1: + ≥ + + + 2 2 1 1 2 1 ab 1 a 1 b 6. Chứng minh: ( ) + + + ≥ + + 2 2 2 a b c 3 2 a b c ; a , b , c ∈ R 7. Chứng minh: ( ) + + + + ≥ + + + 2 2 2 2 2 a b c d e a b c d e 8. Chứng minh: + + ≥ + + 2 2 2 x y z xy yz zx 9. a. Chứng minh: + + + + ≥ ≥ a b c ab bc ca ; a,b,c 0 3 3 b. Chứng minh: + + + +   ≥  ÷   2 2 2 2 a b c a b c 3 3 10. Chứng minh: + + ≥ − + 2 2 2 a b c ab ac 2bc 4 11. Chứng minh: + + ≥ + + 2 2 a b 1 ab a b 12. Chứng minh: + + ≥ − + 2 2 2 x y z 2xy 2xz 2yz 13. Chứng minh: + + + ≥ − + + 4 4 2 2 x y z 1 2xy(xy x z 1) 14. Chứng minh: Nếu a + b ≥ 1 thì: + ≥ 3 3 1 a b 4 15. Cho a, b, c là số đo độ dài 3 cạnh của 1 tam giác. Chứng minh: a. ab + bc + ca ≤ a 2 + b 2 + c 2 < 2(ab + bc + ca). b. abc ≥ (a + b – c)(a + c – b)(b + c – a) c. 2a 2 b 2 + 2b 2 c 2 + 2c 2 a 2 – a 4 – b 4 – c 4 > 0 1 Tuyển tập Bất đẳng thức II. Chứng minh BĐT dựa vào BĐT CÔSI: 1. Chứng minh: + + + ≥ ≥(a b)(b c)(c a) 8abc ; a,b,c 0 2. Chứng minh: + + + + ≥ ≥ 2 2 2 (a b c)(a b c ) 9abc ; a,b,c 0 3. Chứng minh: ( ) ( ) ( ) ( ) + + + ≥ + 3 3 1 a 1 b 1 c 1 abc với a , b , c ≥ 0 4. Cho a, b > 0. Chứng minh: +     + + + ≥  ÷  ÷     m m m 1 a b 1 1 2 b a , với m ∈ Z + 5. Chứng minh: + + ≥ + + ≥ bc ca ab a b c ; a,b,c 0 a b c 6. Chứng minh: + ≥ − ≥ 6 9 2 3 x y 3x y 16 ; x,y 0 4 7. Chứng minh: + ≥ − + 4 2 2 1 2a 3a 1 1 a . 8. Chứng minh: ( ) > − 1995 a 1995 a 1 , a > 0 9. Chứng minh: ( ) ( ) ( ) + + + + + ≥ 2 2 2 2 2 2 a 1 b b 1 c c 1 a 6abc . 10. Cho a , b > 0. Chứng minh:   + + ≤ + +  ÷   + + + 2 2 2 2 2 2 a b c 1 1 1 1 2 a b c a b b c a c 11. Cho a , b ≥ 1 , chứng minh: ≥ − + −ab a b 1 b a 1 . 12. Cho x, y, z > 1 và x + y + z = 4. Chứng minh: xyz ≥ 64(x – 1)(y – 1)(z – 1) 13. Cho a > b > c, Chứng minh: ( ) ( ) ≥ − − 3 a 3 a b b c c . 14. Cho: a , b , c > 0 và a + b + c = 1. Chứng minh: a) b + c ≥ 16abc. b) (1 – a)(1 – b)(1 – c) ≥ 8abc c)     + + + ≥  ÷ ÷ ÷     1 1 1 1 1 1 64 a b c 15. Cho x > y > 0 . Chứng minh: ( ) + ≥ − 1 x 3 x y y 16. Chứng minh: a) + ≥ + 2 2 x 2 2 x 1 ,∀x ∈ R b) + ≥ − x 8 6 x 1 , ∀x > 1 c) + ≥ + 2 2 a 5 4 a 1 17. Chứng minh: + + + + ≤ > + + + ab bc ca a b c ; a, b, c 0 a b b c c a 2 18. Chứng minh: + ≤ + + 2 2 4 4 x y 1 4 1 16x 1 16y , ∀x , y ∈ R 19. Chứng minh: + + ≥ + + + a b c 3 b c a c a b 2 ; a , b , c > 0 2 Tuyển tập Bất đẳng thức 20. Cho a , b , c > 0. C/m: + + ≤ + + + + + + 3 3 3 3 3 3 1 1 1 1 abc a b abc b c abc c a abc 21. Áp dụng BĐT Côsi cho hai số chứng minh: a. + + + ≥ 4 a b c d 4 abcd với a , b , c , d ≥ 0 (Côsi 4 số) b. + + ≥ 3 a b c 3 abc với a , b , c ≥ 0 , (Côsi 3 số ) 22. Chứng minh: + + ≥ + + 3 3 3 2 2 2 a b c a bc b ac c ab ; a , b , c > 0 23. Chứng minh: + + ≥ 3 9 4 2 a 3 b 4 c 9 abc 24. Cho = + x 18 y 2 x , x > 0. Định x để y đạt GTNN. 25. Cho = + > − x 2 y ,x 1 2 x 1 . Định x để y đạt GTNN. 26. Cho = + > − + 3x 1 y , x 1 2 x 1 . Định x để y đạt GTNN. 27. Cho = + > − x 5 1 y ,x 3 2x 1 2 . Định x để y đạt GTNN. 28. Cho = + − x 5 y 1 x x , 0 < x < 1 . Định x để y đạt GTNN. 29. Cho + = 3 2 x 1 y x , x > 0 . Định x để y đạt GTNN. 30. Tìm GTNN của + + = 2 x 4x 4 f(x) x , x > 0. 31. Tìm GTNN của = + 2 3 2 f(x) x x , x > 0. 32. Tìm GTLN của f(x) = (2x – 1)(3 – 5x) 33. Cho y = x(6 – x) , 0 ≤ x ≤ 6 . Định x để y đạt GTLN. 34. Cho y = (x + 3)(5 – 2x) , –3 ≤ x ≤ 5 2 . Định x để y đạt GTLN 35. Cho y = (2x + 5)(5 – x) , − ≤ ≤ 5 x 5 2 . Định x để y đạt GTLN 36. Cho y = (6x + 3)(5 – 2x) , − 1 2 ≤ x ≤ 5 2 . Định x để y đạt GTLN 37. Cho = + 2 x y x 2 . Định x để y đạt GTLN 38. Cho ( ) = + 2 3 2 x y x 2 . Định x để y đạt GTLN 3 Tuyển tập Bất đẳng thức III. Chứng minh BĐT dựa vào BĐT Bunhiacôpxki 1. Chứng minh: (ab + cd) 2 ≤ (a 2 + c 2 )(b 2 + d 2 ) BĐT Bunhiacopxki 2. Chứng minh: + ≤sinx cosx 2 3. Cho 3a – 4b = 7. Chứng minh: 3a 2 + 4b 2 ≥ 7. 4. Cho 2a – 3b = 7. Chứng minh: 3a 2 + 5b 2 ≥ 725 47 . 5. Cho 3a – 5b = 8. Chứng minh: 7a 2 + 11b 2 ≥ 2464 137 . 6. Cho a + b = 2. Chứng minh: a 4 + b 4 ≥ 2. 7. Cho a + b ≥ 1 Chứng minh: + ≥ 2 2 1 a b 2 Lời giải : I. Chứng minh BĐT dựa vào định nghĩa và tính chất cơ bản: 1. Cho a, b > 0 chứng minh: + +   ≥  ÷   3 3 3 a b a b 2 2 (*) (*) ⇔ + +   − ≥  ÷   3 3 3 a b a b 0 2 2 ⇔ ( ) ( ) + − ≥ 2 3 a b a b 0 8 . ĐPCM. 2. Chứng minh: + + ≤ 2 2 a b a b 2 2 ()  a + b ≤ 0 , () luôn đúng.  a + b > 0 , () ⇔ + + + − ≤ 2 2 2 2 a b 2ab a b 0 4 2 ⇔ ( ) − ≥ 2 a b 0 4 , đúng. Vậy: + + ≤ 2 2 a b a b 2 2 . 3. Cho a + b ≥ 0 chứng minh: + + ≥ 3 3 3 a b a b 2 2 ⇔ ( ) + + ≤ 3 3 3 a b a b 8 2 ⇔ ( ) ( ) − − ≤ 2 2 3 b a a b 0 ⇔ ( ) ( ) − − + ≤ 2 3 b a a b 0 , ĐPCM. 4. Cho a, b > 0 . Chứng minh: + ≥ + a b a b b a () () ⇔ + ≥ +a a b b a b b a ⇔ ( ) ( ) − − − ≥a b a a b b 0 ⇔ ( ) ( ) − − ≥a b a b 0 ⇔ ( ) ( ) − + ≥ 2 a b a b 0 , ĐPCM. 5. Chứng minh: Với a ≥ b ≥ 1: + ≥ + + + 2 2 1 1 2 1 ab 1 a 1 b () 4 Tuyển tập Bất đẳng thức ⇔ + − − ≥ + + + + 2 2 1 1 1 1 0 1 ab 1 ab 1 a 1 b ⇔ ( ) ( ) ( ) ( ) − − + ≥ + + + + 2 2 2 2 ab a ab b 0 1 a 1 ab 1 b 1 ab ⇔ ( ) ( ) ( ) ( ) ( ) ( ) − − + ≥ + + + + 2 2 a b a b a b 0 1 a 1 ab 1 b 1 ab ⇔ −   − ≥  ÷ + + +   2 2 b a a b 0 1 ab 1 a 1 b ⇔ ( ) ( )   − + − − ≥  ÷  ÷ + + +   2 2 2 2 b a a ab b ba 0 1 ab 1 a 1 b ⇔ ( ) ( ) ( ) ( ) ( ) − − ≥ + + + 2 2 2 b a ab 1 0 1 ab 1 a 1 b , ĐPCM.  Vì : a ≥ b ≥ 1 ⇒ ab ≥ 1 ⇔ ab – 1 ≥ 0. 6. Chứng minh: ( ) + + + ≥ + + 2 2 2 a b c 3 2 a b c ; a , b , c ∈ R ⇔ ( ) ( ) ( ) − + − + − ≥ 2 2 2 a 1 b 1 c 1 0 . ĐPCM. 7. Chứng minh: ( ) + + + + ≥ + + + 2 2 2 2 2 a b c d e a b c d e ⇔ − + + − + + − + + − + ≥ 2 2 2 2 2 2 2 2 a a a a ab b ac c ad d ae e 0 4 4 4 4 ⇔         − + − + − + − ≥  ÷  ÷  ÷  ÷         2 2 2 2 a a a a b c d e 0 2 2 2 2 . ĐPCM 8. Chứng minh: + + ≥ + + 2 2 2 x y z xy yz zx ⇔ + + − − − ≥ 2 2 2 2x 2y 2z 2xy 2yz 2zx 0 ⇔ ( ) ( ) ( ) − + − + − ≥ 2 2 2 x y x z y z 0 9. a. Chứng minh: + + + + ≥ ≥ a b c ab bc ca ; a,b,c 0 3 3  + + ≥ + + 2 2 2 a b c ab bc ca  + + + + + + + + +   = ≥  ÷   2 2 2 2 a b c a b c 2ab 2bc 2ca ab bc ca 3 9 3 ⇔ + + + + ≥ a b c ab bc ca 3 3 b. Chứng minh: + + + +   ≥  ÷   2 2 2 2 a b c a b c 3 3  ( ) ( ) + + = + + + + + 2 2 2 2 2 2 2 2 2 3 a b c a b c 2 a b c ( ) ( ) ≥ + + + + + = + + 2 2 2 2 a b c 2 ab bc ca a b c ⇒ + + + +   ≥  ÷   2 2 2 2 a b c a b c 3 3 10. Chứng minh: + + ≥ − + 2 2 2 a b c ab ac 2bc 4 5 Tuyển tập Bất đẳng thức ⇔ ( ) − − + + − ≥ 2 2 2 a a b c b c 2bc 0 4 ⇔ ( )   − − ≥  ÷   2 a b c 0 2 . 11. Chứng minh: + + ≥ + + 2 2 a b 1 ab a b ⇔ + + − − − ≥ 2 2 2a 2b 2 2ab 2a 2b 0 ⇔ − + + + + + + + ≥ 2 2 2 2 a 2ab b a 2a 1 b 2b 1 0 ⇔ ( ) ( ) ( ) − + − + − ≥ 2 2 2 a b a 1 b 1 0 . 12. Chứng minh: + + ≥ − + 2 2 2 x y z 2xy 2xz 2yz ⇔ + + − + − ≥ 2 2 2 x y z 2xy 2xz 2yz 0 ⇔ (x – y + z) 2 ≥ 0. 13. Chứng minh: + + + ≥ − + + 4 4 2 2 x y z 1 2x(xy x z 1) ⇔ + + + − + − − ≥ 4 4 2 2 2 2 x y z 1 2x y 2x 2xz 2x 0 ⇔ ( ) ( ) ( ) − + − + − ≥ 2 2 2 2 2 x y x z x 1 0 . 14. Chứng minh: Nếu a + b ≥ 1 thì: + ≥ 3 3 1 a b 4 ° a + b ≥ 1 ⇒ b ≥ 1 – a ⇒ b 3 = (1 – a) 3 = 1 – a + a 2 – a 3 ⇒ a 3 + b 3 =   − + ≥  ÷   2 1 1 1 3 a 2 4 4 . 15. Cho a, b, c là số đo độ dài 3 cạnh của 1 tam giác. Chứng minh: a. ab + bc + ca ≤ a 2 + b 2 + c 2 < 2(ab + bc + ca).  ab + bc + ca ≤ a 2 + b 2 + c 2 ⇔ (a – b) 2 + (a – c) 2 + (b – c) 2  > − > − > −a b c , b a c , c a b ⇒ > − + 2 2 2 a b 2bc c , > − + 2 2 2 b a 2ac c , > − + 2 2 2 c a 2ab b ⇒ a 2 + b 2 + c 2 < 2(ab + bc + ca). b. abc ≥ (a + b – c)(a + c – b)(b + c – a)  ( ) > − − 2 2 2 a a b c ⇒ ( ) ( ) > + − + − 2 a a c b a b c  ( ) > − − 2 2 2 b b a c ⇒ ( ) ( ) > + − + − 2 b b c a a b c  ( ) > − − 2 2 2 c c a b ⇒ ( ) ( ) > + − + − 2 c b c a a c b ⇒ ( ) ( ) ( ) > + − + − + − 2 2 2 2 2 2 a b c a b c a c b b c a ⇔ ( ) ( ) ( ) > + − + − + −abc a b c a c b b c a c. 2a 2 b 2 + 2b 2 c 2 + 2c 2 a 2 – a 4 – b 4 – c 4 > 0 ⇔ 4a 2 b 2 + 2c 2 (b 2 + a 2 ) – a 4 – b 4 – 2a 2 b 2 – c 4 > 0 ⇔ 4a 2 b 2 + 2c 2 (b 2 + a 2 ) – (a 2 + b 2 ) 2 – c 4 > 0 ⇔ (2ab) 2 – [(a 2 + b 2 ) – c 2 ] 2 > 0 ⇔ [c 2 – (a – b) 2 ][(a + b) 2 – c 2 ] > 0 ⇔ (c – a + b)(c + a – b)(a + b – c)(a + b + c) > 0 . đúng ° Vì a , b , c là ba cạnh của tam giác ⇒ c – a + b > 0 , c + a – b > 0 , a + b – c > 0 , a + b + c > 0. 6 Tuyển tập Bất đẳng thức II. Chứng minh BĐT dựa vào BĐT CÔSI: 1. Chứng minh: + + + ≥ ≥(a b)(b c)(c a) 8abc ; a, b, c 0  Áp dụng bất đẳng thức Côsi cho hai số không âm: ⇒ + ≥a b 2 ab , + ≥b c 2 bc , + ≥a c 2 ac ⇒ ( ) ( ) ( ) + + + ≥ = 2 2 2 a b b c a c 8 a b c 8abc . 2. Chứng minh: + + + + ≥ ≥ 2 2 2 (a b c)(a b c ) 9abc ; a,b,c 0  Áp dụng bất đẳng thức Côsi cho ba số không âm: ⇒ + + ≥ 3 a b c 3 abc , + + ≥ 3 2 2 2 2 2 2 a b c 3 a b c ⇒ ( ) ( ) + + + + ≥ = 3 2 2 2 3 3 3 a b c a b c 9 a b c 9abc . 3. Chứng minh: ( ) ( ) ( ) ( ) + + + ≥ + 3 3 1 a 1 b 1 c 1 abc , với a , b , c ≥ 0.  ( ) ( ) ( ) + + + = + + + + + + + 1 a 1 b 1 c 1 a b c ab ac bc abc.  + + ≥ 3 a b c 3 abc , + + ≥ 3 2 2 2 ab ac bc 3 a b c  ( ) ( ) ( ) ( ) + + + ≥ + + + = + 3 3 2 2 2 3 3 1 a 1 b 1 c 1 3 abc 3 a b c abc 1 abc 4. Cho a, b > 0. Chứng minh: +     + + + ≥  ÷  ÷     m m m 1 a b 1 1 2 b a , với m ∈ Z +  +           + + + ≥ + + = + +  ÷  ÷  ÷  ÷  ÷           ≥ = m m m m m m m 1 a b a b b a 1 1 2 1 . 1 2 2 b a b a a b 2 4 2 5. Chứng minh: + + ≥ + + > bc ca ab a b c ; a, b, c 0 a b c  Áp dụng BĐT Côsi cho hai số không âm: + ≥ = 2 bc ca abc 2 2c a b ab , + ≥ = 2 bc ba b ac 2 2b a c ac , + ≥ = 2 ca ab a bc 2 2a b c bc ⇒ + + ≥ + + bc ca ab a b c a b c . 6. Chứng minh: + ≥ − ≥ 6 9 2 3 x y 3x y 16 ; x,y 0 4 () () ⇔ + + ≥ 6 9 2 3 x y 64 12x y ⇔ ( ) ( ) + + ≥ 3 3 2 3 3 2 3 x y 4 12x y Áp dụng BĐT Côsi cho ba số không âm: ( ) ( ) + + ≥ = 3 3 2 3 3 2 3 2 3 x y 4 3x y 4 12x y . 7 Tuyển tập Bất đẳng thức 7. Chứng minh: + ≥ − + 4 2 2 1 2a 3a 1 1 a () () ⇔ + + + + ≥ + 4 4 2 2 2 1 a a a 1 4a 1 a . Áp dụng BĐT Côsi cho 4 số không âm: + + 4 4 2 2 1 a , a , a 1, 1 a ( ) + + + + ≥ + = + + 4 4 2 4 4 2 2 4 2 2 1 1 a a a 1 4 a a a 1 4a 1 a 1 a 8. Chứng minh: ( ) > − 1995 a 1995 a 1 () , a > 0 () ⇔ > − ⇔ + > 1995 1995 a 1995a 1995 a 1995 1995a + > + = + + + + ≥ = 1 4 2 4 3 1995 1995 1995 1995 1995 1994 soá a 1995 a 1994 a 1 1 1 1995 a 1995a 9. Chứng minh: ( ) ( ) ( ) + + + + + ≥ 2 2 2 2 2 2 a 1 b b 1 c c 1 a 6abc . ° ( ) ( ) ( ) + + + + + = + + + + + 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 a 1 b b 1 c c 1 a a a b b b c c c a  Áp dụng bất đẳng thức Côsi cho 6 số không âm: ° + + + + + ≥ = 6 2 2 2 2 2 2 2 2 2 6 6 6 a a b b b c c c a 6 a b c 6abc 10. Cho a , b > 0. Chứng minh:   + + ≤ + +  ÷   + + + 2 2 2 2 2 2 a b c 1 1 1 1 2 a b c a b b c a c ° ≤ = + 2 2 a a 1 2ab 2b a b , ≤ = + 2 2 b b 1 2bc 2c b c , ≤ = + 2 2 c c 1 2ac 2a a c ° Vậy:   + + ≤ + +  ÷   + + + 2 2 2 2 2 2 a b c 1 1 1 1 2 a b c a b b c a c 11. Cho a , b ≥ 1 , chứng minh: ≥ − + −ab a b 1 b a 1 . ° ( ) ( ) = − + ≥ − = − + ≥ −a a 1 1 2 a 1, b b 1 1 2 b 1 ° ≥ − ≥ −ab 2b a 1, ab 2a b 1 ° ≥ − + −ab a b 1 b a 1 12. Cho x, y, z > 1 và x + y + z = 4. C/m: xyz ≥ 64(x – 1)(y – 1)(z – 1) ° ( ) ( ) = − + = − + + + −x x 1 1 x 1 x y z 3 ( ) ( ) ( ) ( ) ( ) ( ) ( ) = − + − + − + − ≥ − − − 2 4 x 1 x 1 y 1 z 1 4 x 1 y 1 z 1 Tương tự: ( ) ( ) ( ) ≥ − − − 2 4 y 4 x 1 y 1 z 1 ; ( ) ( ) ( ) ≥ − − − 2 4 z 4 x 1 y 1 z 1 ⇒ xyz ≥ 64(x – 1)(y – 1)(z – 1). 13. Cho a > b > c, Chứng minh: ( ) ( ) ≥ − − 3 a 3 a b b c c . ° ( ) ( ) ( ) ( ) = − + − + ≥ − − 3 a a b b c c 3 a b b c c 8 Tuyển tập Bất đẳng thức 14. Cho: a , b , c > 0 và a + b + c = 1. Chứng minh: a) b + c ≥ 16abc. ° +   ≥  ÷   2 b c bc 2 ⇔ ( ) + −     ≤ = = −  ÷  ÷     2 2 2 b c 1 a 16abc 16a 16a 4a 1 a 2 2 ° ( ) ( ) ( ) ( ) ( )   − = − − = − − − ≤ − = +   2 2 2 4a 1 a 1 a 4a 4a 1 a 1 1 2a 1 a b c b) (1 – a)(1 – b)(1 – c) ≥ 8abc ° (1 – a)(1 – b)(1 – c) = (b + c)(a + c)(a + b) ≥ =2 bc.2 ac.2 ab 8abc c)     + + + ≥  ÷ ÷ ÷     1 1 1 1 1 1 64 a b c ° + + +     + = ≥  ÷  ÷     4 2 1 a a b c 4 a bc 1 a a a ° + ≥ 4 2 1 4 ab c 1 b b ° + ≥ 4 2 1 4 abc 1 c c      + + + ≥  ÷ ÷ ÷     1 1 1 1 1 1 64 a b c 15. Cho x > y > 0 . Chứng minh: ( ) + ≥ − 1 x 3 x y y  ( ) ( ) ( ) ( ) − = − + + ≥ = − − 3 x y y 1 VT x y y 3 3 x y y x y y 16. Chứng minh: a) + ≥ + 2 2 x 2 2 x 1 ⇔ + ≥ + 2 2 x 2 2 x 1 ⇔ + + ≥ + 2 2 x 1 1 2 x 1 b) + − x 8 x 1 = − + = − + ≥ − = − − − x 1 9 9 9 x 1 2 x 1 6 x 1 x 1 x 1 c. ( ) ( ) + + ≥ + = + 2 2 2 a 1 4 2 4 a 1 4 a 1 ⇔ + ≥ + 2 2 a 5 4 a 1 17. Chứng minh: + + + + ≤ > + + + ab bc ca a b c ; a, b, c 0 a b b c c a 2 ° Vì : + ≥a b 2 ab ⇒ ≤ = + ab ab ab a b 2 2 ab , ≤ = + bc bc bc b c 2 2 bc , ≤ = + ac ac ac a c 2 2 ac ° + + ≥ + +a b c ab bc ca , dựa vào: + + ≥ + + 2 2 2 a b c ab bc ca . ° + + + + + + ≤ ≤ + + + ab bc ca ab bc ac a b c a b b c c a 2 2 9 Tuyển tập Bất đẳng thức 18. Chứng minh: + ≤ + + 2 2 4 4 x y 1 4 1 16x 1 16y , ∀x , y ∈ R ° ( ) = ≤ = + + 2 2 2 4 2 2 x x x 1 8 1 16x 2.4x 1 4x ° ( ) = ≤ = + + 2 2 2 4 2 2 y y y 1 8 1 16y 2.4y 1 4y  + ≤ + + 2 2 4 4 x y 1 4 1 16x 1 16y 19. Chứng minh: + + ≥ + + + a b c 3 b c a c a b 2 ; a , b , c > 0 Đặt X = b + c , Y = c + a , Z = a + b. ° a + b + c = 1 2 (X + Y + Z) ° + − + − + − = = = Y Z X Z X Y X Y Z a , b , c 2 2 2 °         + + = + + + + + −  ÷  ÷  ÷   + + +         a b c 1 Y X Z X Z Y 3 b c a c a b 2 X Y X Z Y Z [ ] ≥ + + − = 1 3 2 2 2 3 2 2 . Cách khác: °       + + = + + + + + −  ÷  ÷  ÷ + + + + + +       a b c a b c 1 1 1 3 b c a c a b b c a c a b ( ) ( ) ( ) [ ]   = + + + + + + + −  ÷ + + +   1 1 1 1 a b b c c a 3 2 b c a c a b  Áp dụng bất đẳng thức Côsi cho ba số không âm: ° ( ) ( ) ( ) [ ]   + + + + + + + ≥ − =  ÷ + + +   1 1 1 1 9 3 a b b c c a 3 2 b c a c a b 2 2 20. Cho a , b , c > 0. C/m: + + ≤ + + + + + + 3 3 3 3 3 3 1 1 1 1 abc a b abc b c abc c a abc ° ( ) ( ) ( ) + = + − + ≥ + 3 3 2 2 a b a b a ab a a b ab ⇒ ( ) ( ) + + ≥ + + = + + 3 3 a b abc a b ab abc ab a b c , tương tự ° ( ) ( ) + + ≥ + + = + + 3 3 b c abc b c bc abc bc a b c ° ( ) ( ) + + ≥ + + = + + 3 3 c a abc c a ca abc ca a b c  ( ) ( ) ( ) + +   ≤ + + =  ÷ + + + + + + + +   1 1 1 1 a b c VT ab a b c bc a b c ca a b c a b c abc 10 [...]... ,  Áp dụng bất đẳng thức Cơsi cho hai số khơng âm : 2 x −1 ° Dấu “ = ” xảy ra ⇔ y= x −1 2 1 x −1 2 1 5 + + ≥2 + = 2 x −1 2 2 x −1 2 2 11 Tuyển tập Bất đẳng thức ° Dấu “ = ” xảy ra ⇔ x −1 2 2 = ⇔ ( x − 1) = 4 ⇔ 2 x −1 Vậy: Khi x = 3 thì y đạt GTNN bằng 5 2 x = 3  x = −1(loại)  3x 1 + , x > −1 Định x để y đạt GTNN 2 x +1 3(x + 1) 1 3 + −  y= 2 x +1 2 26 Cho y =  Áp dụng bất đẳng thức Cơsi cho... cosx Tuyển tập Bất đẳng thức 1 1 1 + + ≤1 2x+y+z x + 2y + z x + y + 2z 43 (Đại học khối B 2005) Chứng minh rằng với mọi x ∈ R, ta có: Chứng minh rằng: x x x  12   15   20  x x x  5 ÷ + 4 ÷ + 3 ÷ ≥ 3 +4 +5       Khi nào đẳng thức xảy ra? 44 (Đại học khối D 2005) Cho các số dương x, y, z thoả mãn xyz = 1 Chứng minh rằng: 1+ x 3 + y 3 1+ y3 + z3 1 + z3 + x 3 + + ≥3 3 xy yz zx Khi nào đẳng thức. .. lớn nhất của biểu thức: A = 3 + 3 x y 51 (Đại học khối B 2006) Cho x, y là các số thực thay đổi Tìm giá trị nhỏ nhất của biểu thức: A= ( x − 1) 2 + y2 + ( x + 1) 2 + y2 + y − 2 21 Tuyển tập Bất đẳng thức LỜI GIẢI 1 (CĐGT II 2003 dự bị) Trong mặt phẳng toạ độ Oxy, xét các điểm:   y 3  3 3  y z  z ÷ , B  0; y+ z ÷ , C  − ;0 ÷ Ax + ;  ÷  2 ÷ 2 2  2 2  2    2 AB = AC = Ta có: 2  3  y... 2000) a) a2 + b2 ≥ 2ab; b2 + c2 ≥ 2bc; c2 + a2 ≥ 2ca ⇒ a2 + b2 + c2 ≥ ab + bc + ca Đẳng thức xảy ra ⇔ a = b = c b) (ab + bc + ca)2 = (ab)2 + (bc)2 + (ca)2 + 2(abbc + bcca + caab) ≥ ≥ abbc + bcca + caab + 2abc(a + b + c) = 3abc(a + b + c) 24 (ĐH Nơng nghiệp I khối A 2000) 29 Ta có: Tuyển tập Bất đẳng thức 1 1 a2 = = = Ta có: 2 a b + a2c a2 (b + c) a2  1 + 1  1 + 1 b c÷ b c   bc bc 1 1 1 ;y= ; z=... 14 (ĐH Nơng nghiệp I HN khối A 2001) Áp dụng BĐT Cơsi cho 2 số dương x3, y2 ta có: 2 x 2 x 1 ≤ = x3 + y2 ≥ 2 x3 y 2 = 2xy x ⇒ 3 2 2xy x xy x +y Áp dụng BĐT Cơsi cho 2 số dương 1 x 2 26 , 1 y2 ta có: Tuyển tập Bất đẳng thức 1 1 1 1 2 x 1 1 1 ≤  2 + 2÷ ⇒ 3 ≤  2 + 2÷ 2 x ÷ x xy 2  2 y  x +y y ÷  Tương tự ta cũng có: 2 y 1 1 1 2 z 1 1 1 ≤  2 + 2 ÷; 3 2 y ÷ z3 + x 2 ≤ 2  z2 + x 2 ÷ 2...       3 Áp dụng BĐT đã chứng minh với α = , ta có: 2 3 3  a 2 1 3 a ;  b 2 1 3 b ;  b ÷ + 2 ≥ 2.b  c ÷ + 2 ≥ 2.c     Mặt khác, theo BĐT Cơsi ta có: 27 3  c 2 1 3 c  a ÷ + 2 ≥ 2.a   Tuyển tập Bất đẳng thức 3 3 3  1  a  2  b  2  c  2  3 + + ≥ 2  b ÷  c ÷  a ÷  2           Cộng 4 BĐT trên, vế theo vế, ta có: 3 3 3  3  a  2  b  2  c  2  3 3  a b c... 3(a2 + b2 + c2) + 4abc ≥ 3(a2 + b2 + c2) + 6(ab + bc + ca) – 14 = 3(a + b +c)2 – 14 = 13 Đẳng thức xảy ra ⇔ 3 – 2a = 3 – 2b = 3 – 2c ⇔ a = b = c = 1 19 (ĐH Y Thái Bình khối A 2001) 2 2 a b a b + = 1 ⇒ 0 < , < 1 ⇒  a 3 +  b 3 > a + b = 1 Từ giả thiết ta có: c÷ c÷ c c c c c c     28 Tuyển tập Bất đẳng thức Từ đó suy ra: 2 2 2 a 3 + b3 > c 3 20 (ĐHQG HN khối A 2000) Đặt x = 2a, y = 2b, z = 2c... Khi x =  Áp dụng bất đẳng thức Cơsi cho hai số khơng âm 2x − 1 5 1 2x − 1 5 1 + + ≥2 + = 6 2x − 1 3 6 2x − 1 3 Dấu “ = ” xảy ra y= 2x − 1 5 , : 6 2x − 1 30 + 1 3  30 + 1 x = 2x − 1 5 2 2 = ⇔ ( 2x − 1) = 30 ⇔  ⇔  6 2x − 1 − 30 + 1 (loại ) x =  2 30 + 1 30 + 1 thì y đạt GTNN bằng 3 2 x 5 + 28 Cho y = , 0 < x < 1 Định x để y đạt GTNN 1− x x Vậy: Khi x = 12 Tuyển tập Bất đẳng thức ° x 5 ( 1− x... (CĐBC Hoa Sen khối D 2006) Ta có: x + y + z ≥ 3 3 xyz ⇔ xyz ≥ 3 3 xyz ⇔ (xyz)2 ≥ 27 ⇔ xyz ≥ 3 3 Dấu "=" xảy ra ⇔ x = y = z = 3 Vậy minA = 3 3 10 (Học viện BCVT 2001) 1 Ta có hàm số f(x) = x là hàm nghịch biến nên: 3 1  1 (a – b)  a − b ÷ ≤ 0, ∀a, b 3  3 a b b a + b ≤ a + b , ∀a, b ⇒ (1) a 3 3 3 3 b c b c Tương tự: b + c ≤ c + b (2) 3 3 3 3 24 Tuyển tập Bất đẳng thức c c Mặt khác: 3 a + + a ≤... b2 ) 1 2 ⇔ a 2 + b2 ≥ 16 1 2 Tuyển tập Bất đẳng thức PHẦN II ĐỀ THI ĐẠI HỌC 1 (CĐGT II 2003 dự bị) Cho 3 số bất kì x, y, z CMR: x 2 + xy + y2 + x2 + xz+z2 ≥ y2 + yz+z2 2 (CĐBC Hoa Sen khối A 2006) Cho x, y, z > 0 và xyz = 1 Chứng minh rằng: x3 + y3 + z3 ≥ x + y + z 3 (CĐKTKT Cần Thơ khối A 2006) Cho 3 số dương x, y, z thoả x + y + z ≤ 1 Tìm giá trị nhỏ nhất của biểu 1 1 1 thức: A=x+y+z+ + + x y z 4 (CĐSPHCM . > 0 , a + b + c > 0. 6 Tuyển tập Bất đẳng thức II. Chứng minh BĐT dựa vào BĐT CÔSI: 1. Chứng minh: + + + ≥ ≥(a b)(b c)(c a) 8abc ; a, b, c 0  Áp dụng bất đẳng thức Côsi cho hai số không. 2 1 y 2 x 1 2  Áp dụng bất đẳng thức Côsi cho hai số không âm − − x 1 2 , 2 x 1 : − − = + + ≥ + = − − x 1 2 1 x 1 2 1 5 y 2 . 2 x 1 2 2 x 1 2 2 11 Tuyển tập Bất đẳng thức ° Dấu “ = ” xảy ra. Tuyển tập Bất đẳng thức PHẦN I: LUYỆN TẬP CĂN BẢN I. Chứng minh BĐT dựa vào định nghĩa và tính chất cơ bản: 1. Cho

Ngày đăng: 06/07/2014, 17:26

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w