Microsoft SQL Server 2005 Developer’s Guide- P11 doc

20 422 0
Microsoft SQL Server 2005 Developer’s Guide- P11 doc

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Chapter 6: Developing Database Applications with ADO.NET 199 functions would be considered part of the same logical transaction. From the database standpoint, to ensure database integrity, both the withdrawal and the deposit would be grouped together as a single transaction. If the withdrawal operation succeeded, but the deposit failed, the entire transaction could be rolled back, which would restore the database to the condition it had before the withdrawal operation was attempted. Using transactions is an essential part of most production-level database applications. ADO.NET supports transactions using the Transaction classes. In order to incorporate transactions into your ADO.NET applications, you first need to create an instance of the SqlTransaction object and then execute the BeginTransaction method to mark the beginning of a transaction. Under the covers this will cause the database server to begin a transaction. For instance, using the SqlTransaction object to issue a BeginTransaction statement will send a T-SQL BEGIN TRANSACTION command to SQL Server. After the transaction has started, the database update operations are performed and then the Commit method is used to actually write the updates to the target database. If an error occurs during the process, then the RollBack operation is used to undo the changes. The following SQLCommandTransaction subroutine shows how to start a transaction and then either commit the results of the transaction to the database or roll back the transaction in the event of an error: Private Sub SQLCommandTransaction(cn As SqlConnection) Dim cmd As New SqlCommand() Dim trans As SqlTransaction ' Start a local transaction trans = cn.BeginTransaction() cmd.Connection = cn cmd.Transaction = trans Try ' Insert a row transaction cmd.CommandText = _ "INSERT INTO Department VALUES(100, 'Transaction 100')" cmd.ExecuteNonQuery() ' This next insert will result in an error cmd.CommandText = _ "INSERT INTO Department VALUES(100, 'Transaction 101')" cmd.ExecuteNonQuery() trans.Commit() Catch e As Exception MsgBox(e.Message) trans.Rollback() End Try End Sub 200 Microsoft SQL Server 2005 Developer’s Guide In the beginning of this subroutine, you can see where the SqlConnection object is passed in and a new instance of the SqlCommand object is created, followed by the definition of a SqlTransaction object named trans. Next, a local transaction is started by using the cn SqlConnection object’s BeginTransaction method to create a new instance of a SqlTransaction object. Note that the connection must be open before you execute the BeginTransaction method. Next, the cmd SqlCommand Connection property is assigned with the cn SqlConnection and the Transaction property is assigned with the trans SqlTransaction object. Within the Try-Catch block, two commands are issued that are within the local transaction scope. The first command is an INSERT statement that inserts two columns into the Department table that was created previously in this chapter. The first insert statement adds the DepartmentID of 100 along with a DepartmentName value of “Transaction 100.” The SqlCommand ExecuteNonQuery method is then used to execute the SQL statement. Next, the cmd object’s CommandText property is set to another SQL INSERT statement. However, this statement will cause an error because it is attempting to insert a duplicate primary key value. In this second case, the DepartmentID of 100 is attempted to be inserted along with the DepartmentName value of “Transaction 101.” This causes an error because the DepartmentID of 100 was just inserted by the previous INSERT statement. When the ExecuteNonQuery method is executed, the duplicate primary key error will be issued and the code in the Catch portion of the Try-Catch block will be executed. Displaying the exception message in a message box is the first action that happens within the Catch block. You can see an example of this message in Figure 6-3. After the message box is displayed, the trans SqlTransaction object’s RollBack method is used to roll back the attempted transaction. Note that because both insert statements were within the same transaction scope, both insert operations will be rolled back. The resulting department table will not contain either DepartmentName “Transaction 100” or DepartmentName “Transaction 101.” Figure 6-3 A duplicate primary key error prevents the Commit operation. Chapter 6: Developing Database Applications with ADO.NET 201 Using the SqlDependency Object SQL Server 2005 and ADO.NET 2.0 now contain a signaling solution in the data provider and the database called Query Notifications. Query Notifications allows your application to request a notification from SQL Server when the results of a query change. You can design applications that query the database only when there is a change to information that the application has previously retrieved. Query Notifications are implemented through the SQL Server 2005 Query Engine, the SQL Server Service Broker, a system stored procedure (sp_DispatcherProc), the ADO.NET System.Data.Sql.SqlNotificationRequest class, the System.Data. SqlClient.SqlDependency class, and the ASP.NET System.Web.Caching.Cache class. The basic process is as follows: 1. The SqlCommand object contains a Notification property that is a request for notification. When the SqlCommand is executed and the Notification property is not null, a request of notification is appended to the command request. 2. SQL Server registers a subscription regarding the request for notification with Query Notifications and then executes the command. 3. SQL Server monitors the SQL statements for anything that would change the originally returned rowset. If the rowset is changed, a message is sent to the Service Broker Service. The message can either send a notification back to the registered client, or wait on the Service Broker’s Queue for retrieval by an advanced client’s custom processing routine. The following example demonstrates the System.Data.SqlClient.SqlDependency object. Note that the application creates a System.Data.SqlClient.SqlDependency object and registers to receive notifications via the System.Data.SqlClient. SqlDependency.OnChange event handler. Imports System Imports System.Data Imports System.Data.SqlClient Imports System.ComponentModel Public Class Form1 Dim cn As New SqlConnection() Dim cmd As New SqlCommand Private Sub StartNotification_Click( & _ ByVal sender As System.Object, ByVal e As System.EventArgs) & _ Handles StartNotification.Click ' Set the connection string 202 Microsoft SQL Server 2005 Developer’s Guide cn.ConnectionString = "SERVER=" & txt_Server.Text & _ ";database=AdventureWorks" & _ ";UID=" & txt_UserID.Text & ";PWD=" & txt_Password.Text cmd.CommandText = "SELECT Category, Description, " & _ "DiscountPct FROM Sales.SpecialOffer" cmd.Connection = cn StartNotify() End Sub Private Sub StartNotify() ' Command Notification property starts as nothing cmd.Notification = Nothing ' a SqlDependency object is attached to the Command object Dim dep As New SqlDependency dep.AddCommandDependency(cmd) AddHandler dep.OnChange, New OnChangeEventHandler( & _ AddressOf MyOnChange) Try ' Open the connection cn.Open() Dim rdr As SqlDataReader ' Create the reader rdr = cmd.ExecuteReader() ' Read results and add to a listbox on displayed form list_Results.Items.Clear() Do While rdr.Read() list_Results.Items.Add(rdr("Category") & vbTab & _ rdr.Item("Description") & vbTab & _ rdr.Item("DiscountPct")) Loop rdr.Close() cn.Close() list_Results.Update() Catch e As Exception MsgBox(e.Message) End Try End Sub Private Sub MyOnChange(ByVal sender As Object, & _ ByVal args As SqlNotificationEventArgs) ' Check for safe UI update. Dim i As ISynchronizeInvoke = CType(Me, ISynchronizeInvoke) Chapter 6: Developing Database Applications with ADO.NET 203 ' If InvokeRequired True, code executing on a worker thread. If i.InvokeRequired Then ' Create a delegate to perform the thread switch. Dim tempDelegate As New OnChangeEventHandler( & _ AddressOf MyOnChange) Dim argues() As Object = {sender, args} ' Marshal the data from worker thread to UI thread. i.BeginInvoke(tempDelegate, argues) Return End If ' Remove the handler. Dim dep As SqlDependency = CType(sender, SqlDependency) RemoveHandler dep.OnChange, AddressOf MyOnChange StartNotify() End Sub End Class In the beginning of the code listing, the Import statements are placed in the declarations section of the project file and a Form1 class is started. A SqlConnection object named cn is created and a new SqlCommand object named cmd is created. The next statement is the StartNotification_Click subroutine, which refers to the click event of a button on a sample windows form. Inside the subroutine, the SqlConnection’s ConnectionString property is set using three textboxes on the form that provide the server name, userid, password. The database of Adventureworks is also used, but in this case is hardcoded. The SqlCommand’s CommandText property is set to select the Category, Description, and DiscountPct field from the Sales.SpecialOffer table in the AdventureWorks database. Next, the cmd object’s Connection property is set to the previously created cn object. A subroutine called StartNotify is then called. The StartNotify subroutine is shown next in the code listing. The cmd object’s Notification property is first set to Nothing, then the SqlDependency object is created and added to the cmd object using the AddCommandDependency method. This will set the cmd object’s Notification property to the SqlDependency object, which will append a notification request to the command request when the command is executed. An OnChangeEventHandler is then created to process any change notifications that are sent back to the application. In the Try/Catch block, you can see that the connection is then opened, a SqlDataReader is created, and the ExecuteReader function is called. The ExecuteReader command will retrieve the records from the Sales.SpecialOffer table, as the SQL SELECT statement requested. The SqlDataReader then reads through the retrieved data and outputs it to a listbox on the windows form. The reader and connection are then closed and the listbox is refreshed to show the data. 204 Microsoft SQL Server 2005 Developer’s Guide The next subroutine, MyOnChange, is the event handler that will execute when any of the originally retrieved data is changed at the server. Here we do a little fancy footwork to move the incoming data from the notification from the worker thread it came in on to the UI thread, so it can be displayed on the windows form. The BeginInvoke method of the ISynchronizeInvoke object is used to set the receive notification process to asynchronous, which allows switching of communication threads. A temporary event handler is created to handle the marshaled data and the original handler is removed. While a discussion on the ISynchronizeInvoke object is beyond the scope of this chapter, this subroutine gives you a brief sample of how to marshal data between threads. The StartNotify subroutine is then called to reset the handler and process the newly changed data and display it to the user in the listbox. Using the SqlDataReader Object The DataReader is a unique entity in the ADO.NET framework. While the rest of the ADO.NET framework was explicitly designed to work in a disconnected model, the DataReader has been designed to work in a more traditional connected fashion. The DataReader essentially provides a fast forward–only stream of data that’s sent from the database server to the application. Thanks to these attributes, this is also known as a fire hose cursor. Unlike the much more feature-laden DataSet, the DataReader is a very lightweight, high-performance object. Also unlike the DataSet, the DataReader is one-way. In other words, it doesn’t allow you to directly update the data that’s retrieved. That doesn’t mean that the data retrieved by the DataReader can’t be changed—it can, but the DataReader doesn’t have any built-in mechanisms that allow updating. To update the data retrieved by the DataReader, you would need to execute either SQL statements or stored procedures, or else move the data into a DataSet. The DataReader is also created a bit differently than the other ADO.NET objects. While most of the other ADO.NET objects, such as the Connection and Command objects, can be instantiated using a constructor (for instance, when you use the New keyword), to create a DataReader, you must call the ExecuteReader method of the Command object. One important consideration to keep in mind with the DataReader is that while the DataReader is in use, it will monopolize the associated Connection object. No other operations can be performed using the Connection (other than closing it) until the Close method of the DataReader is executed. Chapter 6: Developing Database Applications with ADO.NET 205 Retrieving a Fast Forward–Only Result Set Retrieving a fast read-only stream of results from a SQL Server database is the SqlDataReader’s primary purpose. Retrieving quick read-only subsets of data is one of the most common operations for a SQL Server database application, and the SqlDataReader is the best ADO.NET object for this task in that it provides the best data read performance of any ADO.NET object and has minimal overhead. The SqlDataReader maintains a constant connection state to the database from the time the query is started until the database has returned the result stream, which means that the SqlConnection object can’t be used for anything else while the SqlDataReader is active. The following example illustrates the basic usage of the SqDataReader. In this example you’ll see how to retrieve a basic read-only result set from the SQL Server AdventureWorks database and then process the individual data elements that compose the result stream. Private Sub SQLReaderForward(cn As SqlConnection) ' Setup the command Dim cmd As New SqlCommand _ ("SELECT CustomerID, CustomerType FROM Sales.Customer " _ & "WHERE TerritoryID = 4", cn) cmd.CommandType = CommandType.Text Dim rdr As SqlDataReader Try ' Create the reader rdr = cmd.ExecuteReader(CommandBehavior.CloseConnection) ' Read the results and add them to a listbox on displayed form lstResults.Items.Clear() Do While rdr.Read() lstResults.Items.Add(rdr("CustomerID") & vbTab & _ rdr.Item("CustomerType")) Loop rdr.Close() Catch e As Exception MsgBox(e.Message) End Try End Sub In the beginning of the SQLReaderForward subroutine, a SqlConnection object named cn is passed in and a new SqlCommand object named cmd is created. The constructor sets the Command Property to a SQL SELECT statement that retrieves the value of the CustomerID and CustomerType columns from the Sales.Customer 206 Microsoft SQL Server 2005 Developer’s Guide Table in the AdventureWorks database for all rows where the TerritoryID column is equal to 4. Since this is a SQL command, the CommandType is set to CommandText and then a new SqlDataReader named rdr is declared. NOTE At this point you can’t use the SqlDataReader because, although the SqlDataReader object is declared, it has not been instantiated. The SqlDataReader is only instantiated after the SqlCommand object’s ExecuteReader method has been called. Inside the Try block the cmd SqlCommand object’s ExecuteReader is used to instantiate the SqlDataReader. At this point the SqlDataReader is opened and ready to use. You might notice that the ExecuteReader method uses CommandBehavior. CloseConnection enumeration, which automatically closes the connection when the SqlDataReader is closed. The CommandBehavior member provides the Command object a description of the results of the query and also influences the effects of the query on the database. Table 6-6 describes the available CommandBehavior options. Option Description CloseConnection The associated Connection object is closed when the DataReader object is closed. Default No options are set. This is equivalent to calling ExecuteReader(). KeyInfo The query returns column and primary key information. This flag causes the SQL Server .NET Data Provider to append a FOR BROWSE clause to the statement being executed. SchemaOnly The query only returns column metadata and does not return a result set. SequentialAccess This flag is used to handle access to BLOB (Binary Large Objects). When this option is used, the DataReaders loads data as a stream rather than loading the entire row. The GetBytes or GetChars methods can then be used to read the data buffer that’s returned. SingleResult The query is restricted to returning a single result set. SingleRow The query is expected to return a single row. Using the SingleRow flag with the ExecuteReader method of the OleDbCommand object causes the object to perform single-row binding using the OLE DB IRow interface. Otherwise, the OLE DB .NET Provider will perform binding using the IRowset interface. Table 6-6 ExecuteReader CommandBehavior Enumeration Chapter 6: Developing Database Applications with ADO.NET 207 Next, a While loop is used to read the forward-only data stream returned by the SqlDataReader. Within the While loop the two different data elements in the data stream are added to a list box named lstResults that is defined on the Windows form for this project. In this example, each column in the result set is accessed using a string that identifies the column name. In other words, rdr(“CustomerID”) is used to access the CustomerID column and rdr(“CustomerType”) is used to access the CustomerType column. Alternatively, you could also access the column returned by the DataReader in a couple of other ways. First you could use each column’s ordinal position rather than the column name. In this case you could use rdr(0) and rdr(1). Using ordinals may execute a tiny bit faster, but the price you pay in code readability isn’t worth the minuscule performance difference. Next, each of the columns in the result set returned by the SqlDataReader could also have been accessed using the rdr.GetInt32(0) and rdr.GetString(1) methods. The main difference between these options is the fact that when you reference the DataReader columns directly using the named columns, you get back the native .NET Data Provider data type types. Using the GetInt32, GetString, or other similar data access methods returns the .NET Framework data type, and an error will be thrown if the data doesn’t match the data type expected by the method. In addition, the GetString, GetInt32, and other data access methods accept only ordinal values and can’t be used with string identified. You should note that in all of these cases each column must be accessed in the order it appears in the result set. You cannot access the columns out of order. This is because the DataReader provides one-way streams of results to the client application. After all of the results have been retrieved, the rdr.Read method will return the value of False and the while loop will be terminated; then the rdr. Close method is used to close the SqlDataReader. Since the CommandBehavior. CloseConnection flag was used earlier by the ExecuteReader method, the connection to the SQL Server database will also be closed. NOTE Explicitly closing all of the ADO.NET objects is especially important because unlike in ADO, the objects aren’t destroyed when they go out of scope. Instead, if left to their own devices they are destroyed when the .NET garbage collector decides to remove them. However, explicitly closing the DataReader is particularly important because the connection can’t be used for anything else until the DataReader is closed. The code in the Catch block will be executed if an error occurs while using the SqlDataReader. In this case, the exception message will be captured and displayed in a message box. 208 Microsoft SQL Server 2005 Developer’s Guide Reading Schema-Only Information The previous examples illustrated how to retrieve the data and basic column headings using the SqlDataReader. However, the SqlDataReader can also retrieve more detailed table schema information. The metadata returned can help you determine how to process the columns that are returned by the DataReader. The column schema information returned includes the column name and its data type, as well as other information such as whether the column can accept null values. The following SQLReaderSchema subroutine illustrates using the SqlDataReader’s GetTableSchema method to return the schema information for a given query: Private Sub SQLReaderSchema(cn As SqlConnection) ' Setup the command Dim cmd As New SqlCommand("SELECT * FROM Sales.Customer", cn) cmd.CommandType = CommandType.Text Dim rdr As SqlDataReader Try ' Create the reader rdr = cmd.ExecuteReader(CommandBehavior.SchemaOnly) ' bind the returned DataTable to the grid & close grdResults.SetDataBinding(rdr.GetSchemaTable(), "") rdr.Close() Catch e As Exception MsgBox(e.Message) End Try End Sub Like the previous examples, the SQLReaderSchema subroutine begins by creating a new SqlCommand object named cmd. In this case, the SqlCommand object contains a SQL SELECT statement that retrieves all of the columns from the Sales.Customer table. You might note that since this example doesn’t actually retrieve any data, it’s okay to use an unqualified query like this. However, if this were a production query, you would have to make sure to specify the exact columns and rows that your application needed. Next the CommandText property is set to CommandType.Text and a SqlDataReader object named rdr is declared. Next a Try block is used to execute the SqlDataReader. If an error occurs inside the Try block, the code in the Catch block will be executed and message box will be displayed. There are two important points to notice about this example. First, the cmd SqlCommand object’s ExcuteReader method uses the CommandBehavior. SchemaOnly enumeration to specify that only schema metadata should be returned by the SqlDataReader and that no data will be returned to the calling application. [...]... Since this feature relies on a SQL Server 2005 database, it can be used only with SQL Server 2005 databases and doesn’t work with prior versions of SQL Server The following example illustrates using MARS: Chapter 6: Developing Database Applications with ADO.NET Private Sub SQLMARS(ByVal sServer As String) ' Create the connection object Dim cn As New SqlConnection( "SERVER= " & sServer & _ ";INTEGRATED SECURITY=True;DATABASE=AdventureWorks")... namespace The SqlDataAdapter uses the SqlConnection object of the NET Framework Data Provider for SQL Server to connect to a SQL Server data source, and a SqlCommand object that specifies the SQL statements to execute to retrieve and resolve changes from the DataSet back to the SQL Server database Once a SqlConnection object to the SQL Server database has been created, a SqlCommand object is created and... Sales.SpecialOffer table Private Sub DataSetInsertSql(cn As SqlConnection) Dim sqlDA As SqlDataAdapter = New SqlDataAdapter( _ "SELECT * FROM Sales.SpecialOffer", cn) Dim ds = New DataSet() Dim sqlCB = New SqlCommandBuilder(sqlDA) Try ' Populate the dataset sqlDA.Fill(ds, "SpecialOffer") ' Add a new record to the datatable Dim sqlDR = ds.Tables("SpecialOffer").NewRow() sqlDR("Description") = "For a limited time"... to the database Private Sub DataSetUpdateSql(cn As SqlConnection) ' Create the dataadapter and commandbuilder Dim sqlDA As SqlDataAdapter = New SqlDataAdapter( _ "SELECT * FROM Sales.SpecialOffer", cn) Dim ds = New DataSet() Dim sqlCB = New SqlCommandBuilder(sqlDA) Try ' Populate the dataset sqlDA.Fill(ds, "SpecialOffer") ' Update a record in the datatable Dim sqlDR = ds.Tables("SpecialOffer").Rows(... the SqlDataAdapter Object The SqlDataAdapter is used in combination with the SqlConnection object and the SqlCommand object to fill a DataSet with data and then resolve the information back to a Microsoft SQL Server database Populating the DataSet After adding an import directive to your code, you’re ready to begin using the different classes contained in the System.Data.SqlClient namespace The SqlDataAdapter... connection, create a SqlCommand object, and populate a new DataSet with the SqlDataAdapter The contents of the DataSet will then be displayed to the user in a grid: Private Sub FillDataSetSql(cn As SqlConnection, ByVal sTable As String) Dim cmdSelect = New SqlCommand("SELECT * FROM " & sTable, cn) Dim sqlDA = New SqlDataAdapter() sqlDA.SelectCommand = cmdSelect Dim ds = New DataSet() Try sqlDA.Fill(ds, sTable)... table from the AdventureWorks database: Private Sub SQLAsync(ByVal sServer As String) ' Create the connection object Dim cn As New SqlConnection( "SERVER= " & sServer & _ ";INTEGRATED SECURITY=True;DATABASE=AdventureWorks" & _ ";ASYNC=True") Dim cmd As New SqlCommand("SELECT * FROM Production.Product", cn) cmd.CommandType = CommandType.Text Dim rdr As SqlDataReader Try ' Open the connection cn.Open() Dim... To import the System.IO namespace, you need to add the following code to your projects: Imports System.IO The following SQLReaderBLOB subroutine illustrates retrieving BLOB data from the SQL Server database: Private Sub SQLReaderBLOB(cn As SqlConnection) Dim cmd As SqlCommand = New SqlCommand _ ("SELECT LargePhoto FROM Production.ProductPhoto " _ & "WHERE ProductPhotoID = 70", cn) Dim fs As FileStream... ds.Tables("SpecialOffer").Rows.Add(sqlDR) ' Insert the record into the database table sqlDA.Update(ds, "SpecialOffer") Catch e As Exception MsgBox(e.Message) End Try End Sub The first statement creates a SqlDataAdapter, passing to the constructor a SQL SELECT statement and the cn SqlConnection object This automatically sets the SqlDataAdapter’s SelectCommand property to the SQL SELECT statement An empty... source The SqlDataAdapter is then created and its SelectCommand property is set to the SqlCommand object Next, you create a new DataSet and use the Fill method of the SqlDataAdapter to retrieve the records from the SQL Server database and populate the DataSet The following example illustrates how 215 216 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’s G u i d e to make a SQL Server connection, . from the SQL Server database and populate the DataSet. The following example illustrates how 216 Microsoft SQL Server 2005 Developer’s Guide to make a SQL Server connection, create a SqlCommand. applications. Since this feature relies on a SQL Server 2005 database, it can be used only with SQL Server 2005 databases and doesn’t work with prior versions of SQL Server. The following example illustrates. The SqlDataAdapter uses the SqlConnection object of the .NET Framework Data Provider for SQL Server to connect to a SQL Server data source, and a SqlCommand object that specifies the SQL statements

Ngày đăng: 03/07/2014, 01:20

Từ khóa liên quan

Mục lục

  • Contents

  • Acknowledgments

  • Introduction

  • Chapter 1 The Development Environment

    • SQL Server Management Studio

      • The SQL Server Management Studio User Interface

      • SQL Server Management Studio User Interface Windows

      • SQL Server 2005 Administrative Tools

      • BI Development Studio

        • The Business Intelligence Development Studio User Interface

        • BI Development Studio User Interface Windows

        • Summary

        • Chapter 2 Developing with T-SQL

          • T-SQL Development Tools

            • SQL Server Management Studio

            • Visual Studio 2005

            • Creating Database Objects Using T-SQL DDL

              • Databases

              • Tables

              • Views

              • Synonyms

              • Stored Procedures

              • Functions

              • Triggers

              • Security

              • Storage for Searching

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan