Nội dung bất đẳng thức tam giác là một trong những tính chất quan trọng, nó không chỉ dừng lại ở môn Hình mà còn đ-ợc vận dụng vào trong Đại số.. - Chính vì vậy tôi lựa chọn đề tài này v
Trang 1Sáng kiến kinh nghiệm
Phần a Đặt vấn đề
1)Lí do chọn đề tài:
- Trong những năm gần đây việc đổi mới phơng pháp trong dạy học nói chung ngày càng đợc quan tâm, chú trọng Với Toán học, môn học thu hút đợc nhiều đối tợng quan tâm thì việc
đổi mới phơng pháp dạy_học càng là chủ đề sôi nổi hơn Cùng với đổi mới phơng pháp dạy_học thì việc phát hiện và bồi dỡng học sinh có năng khiếu là việc làm thờng xuyên của mỗi thầy cô bộ môn Với chơng trình Hình học 7, học sinh bắt đầu làm quen với những bài toán chứng minh từ cơ bản và dần đợc
nâng cao hơn về tính suy luận lô-gic, hệ thống, chặt chẽ Do nội dung là cơ sở nền tảng cho các lớp sau nên việc nắm chắc những kiến thức, tính chất rất quan trọng cho việc học Hình sau này Mỗi tính chất, định lí học sinh không chỉ nắm đợc nội dung lý thuyết thuần tuý mà cần phải biết vận dụng vào giải những bài tập trong những tình huống khác nhau Cùng với nắm bắt đợc những tính chất qua đó còn giúp học sinh rèn khả năng suy luận lô-gic, chặt chẽ Chính vì vậy mà đối với học sinh khá - giỏi, học sinh có năng khiếu về Toán thì giáo viên càng phải giúp học sinh phát huy đợc năng khiếu của các
em Nội dung bất đẳng thức tam giác là một trong những tính chất quan trọng, nó không chỉ dừng lại ở môn Hình mà còn
đ-ợc vận dụng vào trong Đại số
- Chính vì vậy tôi lựa chọn đề tài này với mong muốn phần nào giúp các em học sinh khá- giỏi Toán có thể hiểu sâu hơn
về bất đẳng thức tam giác, cũng nh giúp các em có khả năng suy luận tốt hơn, vận dụng vào những tình huống có thể và bớc đầu có thói quen nhìn nhận một bài toán ở nhiều khía cạnh khác nhau, có ý thức trong việc liên hệ giữa Hình học và
Đại số
2)Mục đích, đối t ợng, ph ơng pháp :
a)Mục đích:
Trang 2Sáng kiến kinh nghiệm
- yêu cầu đổi mới phơng pháp trong dạy học Toán là cần phát huy khả năng sáng tạo, khả năng t duy, suy luận cũng nh phát huy năng khiếu học Toán cho học sinh
- Khái niệm bất đẳng thức là một khái niệm mới đối với học sinh lớp 7
(các em cha đợc học).Vì vậy đối với những học sinh khá - giỏi thì ta có thể trang bị cho các em những kiến thức cơ bản về bất đẳng thức thông qua phần bất đẳng thức tam giác
*) Qua việc dạy bất đẳng thức tam giác giúp học sinh:
-Phát huy đợc khả năng suy luận lôgíc, khả năng vận dụng Toán học vào các tình huống khác nhau cũng nh vận dụng vào giải bài toán Đại
- Bồi dỡng, khắc sâu, nâng cao kiến thức cho các em giúp các em có vốn kiến thức cho việc học Toán cũng nh các kì thi sau này
b)Đối t ợng nghiên cứu :
- Bất đẳng thức tam giác trong Hình học 7
- Học sinh khá giỏi môn Toán khối 7
c)Ph ơng pháp nghiên cứu :
- Đọc nghiên cứu tài liệu tham khảo:
+ Toán cơ bản và nâng cao 7
+ Tuyển chọn và phân loại toán cấp 2 Hình học
+ SGK_SBT Toán 7
- Phơng pháp thực nghiệm
- Phơng pháp kiểm tra – so sánh, đánh giá
- Trao đổi với đồng nghiệp
Trang 3Sáng kiến kinh nghiệm
Phần b giải quyết vấn đề.
I)Nhắc lại kiến thức “ Bất đẳng thức trong tam giác ”:
1) Định lí:
“Trong một tam giác tổng độ dài hai cạnh bất kì bao giờ
cũng lớn hơn độ dài cạnh còn lại".
Cho tam giác ABC ta có các bất đẳng thức sau
AB + AC > BC
AB + BC > AC
AC + BC > AB
2) Hệ quả :
- “Trong một tam giác hiệu độ dài hai cạnh bất kì bao giờ
cũng nhỏ hơn độ dài cạnh còn lạ".
- Cho tam giác ABC ta có các bất đẳng thức:
AB – AC < BC AB – BC < AC AC – BC < AB
AC – AB < BC BC – AB < AC BC – AC < AB
3) Nhận xét :
- “Trong một tam giác độ dài một cạnh bao giờ cũng lớn hơn
hiệu và nhỏ hơn tổng độ dài của hai cạnh còn lại".
Tam giác ABC chẳng hạn ta luôn có:
AB – AC < BC < AB + AC
4) Kiến thức bổ sung :
- Vì học sinh lớp 7, các em cha đợc học về “Bất đẳng thức"
vì vậy trong quá trình bồi dỡng tôi cũng đã trang bị cho các
em những kiến thức cơ bản về “Bất đẳng thức":
+) Định nghĩa: a > b nếu a – b là một số dơng
+) Tính chất:
Trang 4Sáng kiến kinh nghiệm
1 Nếu a > b thì a + c > b + c
2 Nếu a > b và c > 0 thì a.c > b.c
3 Nếu a > b và c < 0 thì a.c < b.c
II)Nội dung ph ơng pháp:
*)Trên cơ sở những kiến thức đó ta có thể bồi dỡng cho học sinh khá - giỏi với các nội dung nh sau:
1)Những bài tập vận dụng cơ bản:
Qua nội dung bài tập về nhà, giáo viên yêu cầu học sinh làm thêm những bài tập có thể là trong sách bài tập hoặc bài tập giáo viên tự lựa chọn
Ví dụ 1:
Bài 27(SBT-27)
Cho điểm M nằm trong tam giác ABC
Chứng minh rằng:
MA + MB + MC lớn hơn nửa chu vi của tam giác ABC
Lời giải:
xét tam giác AMB; tam giác AMC; tam giác BMC,
theo bất đẳng thức tam giác ta có:
MA + MB > AB
MA + MC > AC
MB + MC > BC
Cộng vế trái với vế trái, vế phải với vế phải của ba bất đẳng thức lại ta có:
2(MA + MB + MC) > AB + AC + BC
Ví dụ 2:
Bài 30(SBT-27)
Cho tam giác ABC Gọi M là trung điểm của BC
Chứng minh: AM <
Trên tia đối của tia MA lấy điểm D sao cho
MD = MA Dễ dàng chứng minh đợc
AMB = DMC (c.g.c)
CD = AB (hai cạnh tơng ứng) (1)
A
A
C M
B
Trang 5Sáng kiến kinh nghiệm
Xét tam giác ACD theo bất đẳng thức ta có:
AC + CD > AD = 2AM mà CD = AB ( theo (1) )
AC + AB > 2AM
Ví dụ 3:
Cho điểm I nằm trong tam giác ABC
Chứng minh rằng: BI + IC < BA + AC
Lời giải
Kéo dài BI cắt AC tại K
Xét AKB có BK < AB + AK (Bất đẳng thức tam giác)
BI + IK < AB + AK BI < AB + AK - IK (1)
Xét KIC có IC < IK + KC (Bất đẳng thức tam giác)
IC < IK + (AC – AK) (2)
Cộng vế trái với vế trái, vế phải với vế phải của (1) với (2) ta có:
BI + IC < AB + AK – IK + IK + AC – AK
BI + IC < AB + AC (đpcm)
*)Nhằm khắc sâu hơn về bất đẳng thức tam giác trong quá trình bồi dỡng tôi đã cho các em làm những bài tập có tính nâng cao hơn:
2)Những bài toán nâng cao.
Ví dụ 1:
Cho góc xOy, Oz là tia phân giác của góc xOy Từ điểm M
thuộc Ox ), vẽ MK vuông góc với Oy( K thuộc Oy )
Chứng minh: MH < MK
Lời giải:
Gọi A là giao điểm của MK với Oz
Vẽ AB Ox ( B thuộc Ox ) Nối B với M
Xét KOA vuông tại K và BOA vuông tại
B có:
OA là cạnh chung
(Oz là tia phân giác)
Do đó KOA = BOA( cạnh huyền – góc nhọn )
AK = AB ( hai cạnh tơng ứng )
Xét AMB có BM < AB + AM (Bất đẳng thức tam giác)
K
x M A
B
z
y O
H
K A
C I
B
Trang 6Sáng kiến kinh nghiệm
Do đó BM < AK + AM (AB = AK ) hay BM < MK
Mặt khác MH < BM (Quan hệ giữa đờng xiên và đờng vuông góc)
Suy ra MH < MK (Điều phải chứng minh)
Ví dụ 2
Cho tam giác ABC có AB > AC,
AD là tia phân giác của BAC ( D BC)
M là điểm nằm trên đoạn thẳng AD
Chứng minh: MB – MC < AB – AC
Lời giải Trên cạnh AB lấy điểm E sao cho AE = AC
vì AB > AC nên E nằm giữa A và B suy ra
AE + EB = AB
EB = AB – AE = AB – AC
xét AEM và ACM có:
AE = AC (cách vẽ)
AM là cạnh chung
Do đó AEM = ACM (c.g.c)
Suy ra ME = MC (hai cạnh tơng ứng)
Xét MEB có MB – ME < EB (Bất đẳng thức tam giác)
Vì MC = ME, EB = AB - AC
Do đó MB – MC < AB – AC (điều phải chứng minh)
Ví dụ 3:
Cho tam giác ABC gọi a, b, c lần lợt là độ dài ba cạnh của tam giác
Chứng minh rằng:
a2 + b2 + c2 < 2(ab + bc + ca)
Lời giải
Theo bất đẳng thức tam giác ta có:
a + b – c > 0 => c(a + b – c) > 0 (1)
b + c – a > 0 => a(b +c – a) > 0 (2)
a + c – b > 0 => b(a + c – b) > 0 (3)
Cộng vế trái với vế trái, vế phải với vế phải của các bất đẳng thức (1), (2), (3) ta đợc:
c(a + b – c) + a(b +c – a) + b(a + c – b) > 0
A
a
C B
A
M E
C
Trang 7Sáng kiến kinh nghiệm
=> ac + bc – c2 + ab + ac – a2 + ab + bc – b2 > 0
=> 2(ab + bc + ca) – (a2 + b2 + c2) > 0
2(ab + bc + ca) > a2 + b2 + c2 (điều phải chứng minh)
Ví dụ 4:
Chứng minh rằng nếu:
a = y + z ; b = z + x ; c = x + y thì a, b, c là độ dài các cạnh của một tam giác ( x, y, z lớn hơn 0)
Lời giải
Theo bài ra ta có:
a = y + z
b = z + x => 2(x + y + z) = a + b + c => x + y + z =
c = x + y
Vì x, y, z > 0 => > 0 ; > 0 ; > 0
=> a, b, c thoả mãn là độ dài 3 cạnh của một tam giác
Ví dụ 5:
Cho a, b, c là độ dài ba cạnh của một tam giác thoả mãn a + b + c = 2
Chứng minh: ab + bc + ac > abc + 1
Lời giải
Vì a, b, c là độ dài 3 cạnh của một tam giác
Suy ra : a + b > c
b + c > a
a + c > b
mà a + b + c = 2
suy ra a < 1 ; b < 1 ; c < 1
=> (a - 1)(b - 1)(c - 1) < 0
(ab - a - b + 1)(c - 1) = abc - ab - ac + a - bc + b + c - 1 < 0
abc + ( a + b + c) - 1 < ab + ac + bc vì a + b + c = 2
A
b a c
Trang 8Sáng kiến kinh nghiệm
=> abc + 1 < ab + ac + bc (điều phải chứng minh)
*) Ngoài việc rèn kỹ năng và khắc sâu kiến thức cho học sinh thì tôi đã cho học sinh làm những bài tập vận dụng kết
hợp“Bất đẳng thức tam giác” với một bài toán Đại
3)Sử dụng bất đẳng thức tam giác
trong việc giải một bài toán Đại
Ví dụ 1:
Tìm độ dài ba cạnh của một tam giác, biết cạnh thứ nhất dài gấp rỡi cạnh thứ 2, cạnh thứ 2 dài gấp rỡi cạnh thứ 3 và nửa chu vi tam giác bằng 9,5 cm
Lời giải
Gọi độ dài cạnh thứ 3 là x (cm)
Theo đề bài độ dài cạnh thứ 2 là (cm)
Độ dài cạnh thứ nhất là (cm)
Bất đẳng thức tam giác thoả mãn vì: x + =
Chu vi của tam giác là: x + + = (cm)
Theo bài ra ta có : = 9,5 => x = 4 (cm)
=> Độ dài ba cạnh của tam giác là : 4cm, 6cm, 9cm
Ví dụ 2
Cho ba số a, b, c > 0 thoả mãn a2 + b2 = c2
Chứng minh: ab + ac > a2
Lời giải
Vì a, b, c > 0 và thoả mãn a2 + b2 = c2 theo định lý Py-ta-go
đảo ta có
a, b, c là độ dài ba cạnh của một tam giác
áp dụng bất đẳng thức tam giác ta có: b + c > a
Trang 9A C
B
a b
a
b
A
B
C
b
a
b a
Sáng kiến kinh nghiệm
nhân cả hai vế với a ta có : ab + ac > a2 (điều phải chứng minh)
*) Rõ ràng việc vận dụng định lý Py-ta-go và rồi vận dụng
bất đẳng thức tam giác đã làm cho bài toán đợc chứng minh
dễ dàng, dễ hiểu, gần gũi với đối tợng học sinh lớp 7
Ví dụ 3
Cho hai số a, b > 0 Chứng minh rằng
Lời giải :
- Gọi là độ dài cạnh góc vuông của tam giác vuông ABC,
là độ dài cạnh góc vuông còn lại Khi đó độ dài cạnh huyền chính là điều này luôn thoả mãn vì:
( )2 + ( )2 = ( )2(định lý Py- Ta - Go đảo)
Vậy theo bất đẳng thức tam giác ta có:
AB + AC > BC
=> (điều phải chứng minh)
Ví dụ 4:
Cho hai số a > b > 0 Chứng minh - <
Tơng tự ví dụ 3 : Dựng một tam giác vuông ABC có độ dài cạnh góc vuông AC = , độ dài cạnh góc vuông AB = khi đó
độ dài cạnh huyền chính là điều đó luôn thoả mãn vì: ( )2 - ( )2 = ( )2 (Định lí Py- Ta- Go)
Vậy theo Bất đẳng thức tam giác ta có:
BC - AC < AB
=> - < (điều phải chứng minh)
*) Sau khi học sinh đã làm đợc bài tập ở ví dụ 3 thì với
Trang 10Sáng kiến kinh nghiệm
ví dụ 4 các em sẽ nghĩ ngay đến ví dụ 3 và có thể vận
dụng vào làm bài Từ cách làm nh 2 ví dụ trên ta có thể cho các
em làm bài tập nâng cao hơn nữa để qua đó các em rèn cho các em t duy suy luận, đồng thời đảm bảo tính liền mạch trong nội dung kiến thức nh ví dụ sau :
Ví dụ 5
Cho a > 0 Chứng minh rằng :
Giải
Dựng tam giác vuông ABC thoả mãn
Trên cạnh AC lấy điểm D sao cho
AD = 1, DC = 3
-Xét tam giác ABD và
tam giác ABC vuông tại A
Theo định lý Py - Ta - Go ta có :
BD2 = AB2 + AD2 = ( )2 + 12 = a2 + 1 => BD =
BC2 = AB2 + AC2 = ( )2 + 42 = a2 + 16 => BC =
- Xét tam giác BCD có : BC – BD < CD (bất đẳng thức tam giác)
Thay độ dài của BC, BD, CD vào ta có :
(đpcm)
Một số bài tập tập tham khảo :
Bài 1: Cho O là một điểm nằm trong tam giác ABC
Chứng minh:
OA + OB + OC < AB + AC + BC < 2(OA + OB + OC)
A
B
3
a
D
Trang 11Sáng kiến kinh nghiệm
Bài 2: Cho tam giác ABC M là điểm nằm trên tia phân giác ngoài
của góc C Chứng minh: MA + MB > AB + BC
Bài 3: Biết a, b, c là độ dài 3 cạnh của một tam giác và a + b + c = 4
Chứng minh rằng: abc + 8 < 2(ab + ac + bc)
Bài 4:Cho a, b, c là 3 số lớn hơn 0, thoả mãn: a2 - b2 = c2
Chứng minh: ab – ac < a2
Bài 5: Cho a 0 chứng minh:
II)Kết quả:
Với nội dung kiến thức nh trên khi áp dụng vào việc bồi dỡng các em học sinh khá - giỏi, so với năm trớc khi cha áp dụng kết quả thu đợc nh sau:
- Tất cả các em đều nắm chắc hơn kiến thức về bất
đẳng thức tam giác
- Có kỹ năng tốt hơn trong việc giải một bài toán về bất
đẳng thức tam giác
- Các em đã đã có ý thức nhìn nhận một bài toán dới nhiều khía cạnh khác nhau, nhất là tìm mối liên hệ giữa hình học và đại số
III)Hạn chế :
Bên cạnh những kết quả đã đạt đợc thì vẫn còn một số hạn chế sau:
- Đây là kiến thức tơng đối khó vì nó liên quan nhiều đến
“Bất đẳng thức” các em cha đợc học(giáo viên phải bổ sung) vì vậy khả năng vận dụng của các em phần nào bị hạn chế
- Đề tài chỉ áp dụng đối với học sinh khá - giỏi – Không có tính thờng xuyên
Trang 12Sáng kiến kinh nghiệm
IV) Điều kiện áp dụng:
- Đối với học sinh khá - giỏi Toán 7
- Với phơng pháp vận dụng vào giải những bài toán Đại số có thể
áp dụng với học sinh lớp 8 – 9
V) Bài học kinh nghiệm :
- Dù là dạng toán nào và khó đến đâu đi nữa nếu đợc trang bị một cách đầy đủ những kiến cơ bản thì các em sẽ
có đủ tự tin để phát huy t duy sáng tạo của mình
- Với mỗi tính chất toán học ngoài việc hệ thống hoá kiến thức cơ bản giáo viên cần cung cấp cho các em các quy tắc, thuật giải, các phơng pháp chứng minh cụ thể, dễ hiểu để các
em dễ vận dụng
- Trớc mỗi bài toán giáo viên cần rèn cho học sinh kỹ năng phân tích, phán đoán từ đó chọn ra phơng pháp chứng minh
đơn giản và hiệu qủa nhất
- Ngoài những phơng pháp giải vận dụng trực tiếp kiến thức
đang học, mỗi bài toán cần nhìn nhận ở nhiều khía cạnh khác nhau bài toán hình có thể có phơng pháp giải đại số và ngợc lại
Phần c kết luận và kiến nghị
I.Kết luận.
Trên đây là toàn bộ nội dung đề tài mà tôi đã nghiên cứu
và thực nghiệm trong năm học này Đề tài này bớc đầu đã
mang lại cho tôi một số kết quả nhất định song nó cha thật hoàn hảo Trong thời gian tới tôi sẽ tiếp tục nghiên cứu tài liệu, sách tham khảo để đề tài đợc hoàn thiện hơn Qua đây tôi rất mong nhận đựơc sự góp ý của tổ chuyên môn, của đồng nghiệp để cho đề tài của tôi đợc hoàn thiện hơn
II Kiến nghị.
Trang 13
Sáng kiến kinh nghiệm
- Với Nhà trờng, Phòng giáo dục : Cần tổ chức nhiều chuyên đề trong một năm học để giáo viên có điều kiện trao đổi, học hỏi kinh nghiệm lẫn nhau về chuyên môn nghiệp vụ
- Với ngành : Cần có sự chỉ đạo thống nhất trong việc phát hành các loại sách tham khảo tránh tản mạn và trùng lặp giữa các loại sách
Xin trân trọng cảm ơn !